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Descriptive Complexity

I Offers a machine independent description of complexity classes:
I Time/Space used by a machine to decide a problem
⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.
I Many characterisations are known:

I Fagin’s Theorem 1973: Existential second-order logic characterises NP.
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⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.
I Many characterisations are known:

I Fagin’s Theorem 1973: Existential second-order logic characterises NP.

”A graph is three colourable” =

∃R∃B∃G
(
”each node is labeled by exactly one colour”

∧ ”adjacent nodes are always coloured with distinct colours”
)
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I Offers a machine independent description of complexity classes:
I Time/Space used by a machine to decide a problem
⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.
I Many characterisations are known:

I Fagin’s Theorem 1973: Existential second-order logic characterises NP.
I ESOpolylog characterises NPolylogTime.
I Second-order logic characterises the polynomial time hierarchy.
I Least fixed point logic LFP characterises P on ordered structures.
I ...
I Major open problem: Does there exist a logic for P?
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Sublinear Complexity Classes and Random Access Machines

I In sublinear time the whole the input cannot be read.
I Turing machines with sequental access to the input does not suffice.
I Instead random access model is used (cf. random access memory RAM)

I Random access machine model:

1 0 0 1 1 0 B . . . Input Tape (read only)

1 0 B B B B B . . . Address Tape

0 1 1 0 1 B B . . . k Work Tapes

I Finite control of the machine as for TM.

I PolylogTIME =
⋃

k∈NDTIME[logk n]
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Example computation in deterministic polylogarithmic time

I Calculate the length n of the input.

1 0 0 B B B B . . . Input Tape (read only)

0 B B B B B B . . . Index Tape
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Example computation in deterministic polylogarithmic time

I Calculate the length n of the input.

1 0 0 B B B B . . . Input Tape (read only)

1 1 B B B B B . . . Index Tape
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Example computation in deterministic polylogarithmic time

I Calculate the length n of the input.

1 0 0 B B B B . . . Input Tape (read only)

1 0 B B B B B . . . Index Tape

I The index tape has n − 1 as binary.

I Any polynomial time numerical property of n (in binary) can be computed.
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Structures as inputs to the Turing machine

I Finite ordered structures with domain {0, . . . , n} and finite vocabularies.

I Structures are encoded as strings as usual in descriptive complexity.

I Relation RA of arity k is encoded as a binary string of length |A|k , where 1
in a given position indicates that the corresponding tuple is in the relation.

I Constant number cA is encoded as a binary string of length dlog ne.
I k-ary functions are viewed as dlog ne-many k-ary relations, where the i-th

relation indicates whether the i-th bit is 1.

I DTIME[logk n̂] = DTIME[logk n], where n̂ is the length of the encoding
and n the domain size.
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Index Logic

I Two sorted structures:
I Domain of the structure: {0, . . . , n}, for some n.
I Built-in order predicate ≤ for the domain.
I Functions, constants, relations and first-order variables range over the domain.
I Numerical domain: {0, . . . , dlog ne − 1}.
I Built-in order predicate ≤ for the numerical domain.
I First-order and second-order variables ranging over the numerical domain.

I Vars x , y , . . . range over the domain, and ν, µ, . . . over the numerical one.

I Idea: Full fixed point logic over the numerical sort, and restricted
quantification over the actual domain.
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Fixpoints

Let F : P(B)→ P(B) be a function.

I X is a fixed point of F , if F (X ) = X .

I X is the least fixed point, if additionally X ⊆ Y for all other fixed points Y .

For monotonic functions, the least fixed lfp(F ) point always exists.
It can be calculated as the limit of the process:

F 0 = ∅, Fm+1 = F (Fm)

For non-monotonic functions, we may take the inflationary fixed point ifp(F ).
It can be calculated as the limit of the process:

F 0 = ∅, Fm+1 = Fm ∪ F (Fm)
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Fixed point logics

I Let ϕ(X , x̄) be a formula with a free k-ary relation variable, and x̄ a k-tuple
of variables.

I On a model A, s, the formula ϕ(X , x̄) defines a function

FA,s
ϕ,X ,x̄ : P(Ak)→ P(Ak):

FA,s
ϕ,X ,x̄(B) := {ā | A, s(X 7→ B, x̄ 7→ ā) |= ϕ}.

I We may take the least fixed point or inflationary fixed point of FA,s
ϕ,X ,x̄ .
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I We may take the least fixed point or inflationary fixed point of FA,s
ϕ,X ,x̄ .

8 of 14



Descriptive
Complexity of
Deterministic

Polylogarithmic
Time

Jonni Virtema

Descriptive
Complexity

Polylogarithmic
Time

Index Logic

Fixed points

Syntax on IL

Semantics of IL

Results

Open Question

Index Logic – Syntax

I Ordinary terms: t ::= x | c | f (t, . . . , t).

I Numerical terms: Only numerical variables µ, etc.
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Index Logic – Syntax

I Atomic formulae:

ϕ ::= t = t ′ | t ≤ t ′ | µ = µ′ | µ ≤ µ′ | R(t1, . . . , tn) | X (µ1, . . . , µk) |

9 of 14



Descriptive
Complexity of
Deterministic

Polylogarithmic
Time

Jonni Virtema

Descriptive
Complexity

Polylogarithmic
Time

Index Logic

Fixed points

Syntax on IL

Semantics of IL

Results

Open Question

Index Logic – Syntax

I Atomic formulae:

ϕ ::= t = t ′ | t ≤ t ′ | µ = µ′ | µ ≤ µ′ | R(t1, . . . , tn) | X (µ1, . . . , µk) |

I More atomic formulae

t = index{µ : ϕ(µ)} | [LFPµ̄,Xϕ]ν̄ |
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Index Logic – Syntax

I Atomic formulae:

ϕ ::= t = t ′ | t ≤ t ′ | µ = µ′ | µ ≤ µ′ | R(t1, . . . , tn) | X (µ1, . . . , µk) |

I More atomic formulae

t = index{µ : ϕ(µ)} | [LFPµ̄,Xϕ]ν̄ |

I Complex formulae

ϕ ∧ ϕ | ¬ϕ | ∃µϕ | ∃x
(
x = index{µ : α(µ)} ∧ ϕ

)
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Index Logic – Semantics

A, s |= t1 = t2 iff s(t1) = s(t2)

A, s |= t1 ≤ t2 iff s(t1) ≤ s(t2)

A, s |= R(t1, . . . , tk) iff (s(t1), . . . , s(tk)) ∈ RA

A, s |= X (µ1, . . . , µk) iff (s(µ1), . . . , s(µk)) ∈ s(X )

A, s |= ¬ϕ iff A, s 6|= ϕ

A, s |= ϕ ∧ ψ iff A, s |= ϕ and A, s |= ψ

A, s |= ϕ ∨ ψ iff A, s |= ϕ or A, s |= ψ

A, s |= ∃µϕ iff A, s(µ 7→ i) |= ϕ, for some i ≤ dlog|A|e
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Open Question

Index Logic – Semantics

A, s |= t = index{µ : ϕ(µ)} iff

s(t) in binary is b̄, where the ith bit is 1 iff A, s(µ 7→ i) |= ϕ
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Open Question

Index Logic – Semantics

A, s |= ∃x(x = index{µ : α(µ)} ∧ ϕ) iff

A, s(x 7→ i) |= x = index{µ : α(µ)} ∧ ϕ, for some i ∈ A.
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Index Logic – Semantics

A, s |= [LFPµ̄,Xϕ]ν̄ iff s(ν̄) ∈ lfp(FA
ϕ,µ̄,X ).
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Results

Theorem

Over ordered structures, index logic captures PolylogTime.

Theorem

Let c and d be constant symbols in a vocabulary σ. There does not exist an
index logic formula ϕ that does not use the order predicate ≤ on ordinary terms
and that is equivalent with the formula c ≤ d .

Theorem

Let σ be a vocabulary without constant or function symbols. For every sentence
ϕ of index logic of vocabulary σ there exists an equivalent sentence ϕ′ that does
not use the order predicate on ordinary terms.
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Proposition

Checking emptiness of a unary relation PA is not computable in PolylogTime.
Hence ∃xP(x) is not expressible in index logic.

Proof.

I Let M be a TM that decides in PolylogTime whether PA is empty.
Let f be a polylogarithmic function that bounds the running time of M.

I Let A∅ be the {P}-structure with domain {0, . . . , n − 1}, where PA = ∅.
The encoding of A∅ to the Turing machine M is the sequence s := 0 . . . 0︸ ︷︷ ︸

n times

.

I The running time of M with input s is strictly less than n.
Let i be an index of s that was not read in the computation M(s).

I Define s ′ := 0 . . . 0︸ ︷︷ ︸
i times

1 0 . . . 0︸ ︷︷ ︸
n − i − 1 times

.

I The output of the computations M(s) and M(s ′) are identical.
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Proposition

Checking emptiness of a unary relation PA is not computable in PolylogTime.
Hence ∃xP(x) is not expressible in index logic.

Proof.

I Let M be a TM that decides in PolylogTime whether PA is empty.
Let f be a polylogarithmic function that bounds the running time of M.

I Let A∅ be the {P}-structure with domain {0, . . . , n − 1}, where PA = ∅.
The encoding of A∅ to the Turing machine M is the sequence s := 0 . . . 0︸ ︷︷ ︸

n times

.

I The running time of M with input s is strictly less than n.
Let i be an index of s that was not read in the computation M(s).

I Define s ′ := 0 . . . 0︸ ︷︷ ︸
i times
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Direct Access Turing Machines

I A novel variant on RAM that accesses the structure directly.

I For each k-ary relation

0 1 1 0 1 B B . . . k Address Tapes

I For each k-ary function

0 1 1 0 1 B B . . . k Address Tapes

0 1 1 0 1 B B . . . 1 Function Value Tape (Read Only)

I Additionally

0 1 1 0 1 B B . . . 1 Extra Read Only Tape (stores |A|)

0 1 1 0 1 B B . . . k Work Tapes
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Open Question

I Order-invariant properties are properties of ordered models that remain
unaffected if the ordering is redefined.

I Which order-invariant properties are computable in PolylogTime?

I E.g., any polynomial-time numerical property of the size of the domain is
clearly computable. For example even cardinality is computable.

I The binary representation of a constant can be computed. However the
number depends on the order.
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Open Question Thanks!

I Order-invariant properties are properties of ordered models that remain
unaffected if the ordering is redefined.

I Which order-invariant properties are computable in PolylogTime?

I E.g., any polynomial-time numerical property of the size of the domain is
clearly computable. For example even cardinality is computable.

I The binary representation of a constant can be computed. However the
number depends on the order.
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