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Which properties of graphs can be described with a given logic L.

Example first-order logic on graphs G = (V, E):
» Single formula: IxJy —x = y defines the class {(V,E) | |V| > 2}.

Characterizing
Frame Definability
in Team Semantics
via The Universal

Modality

Jonni Virtema

Definability




Definability

Which properties of graphs can be described with a given logic L.

Example first-order logic on graphs G = (V, E):
» Single formula: IxJy —x = y defines the class {(V,E) | |V| > 2}.

> Set of formulae:
{3x1... %, /\ -x; = xj | n € N}
i#j<n

defines the class of infinite graphs.
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Definability

Which properties of graphs can be described with a given logic L.

Example first-order logic on graphs G = (V, E):
» Single formula: IxJy —x = y defines the class {(V,E) | |V| > 2}.

» Set of formulae:
{3x1... %, /\ -x; = xj | n € N}
i#j<n

defines the class of infinite graphs.

A class of structures is called elementary, if there exists a set of FO-formulae
that defines the class.
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Set ® of atomic propositions. The formulae of ML(®P) are generated by:

Modal logic

pu=ploe|(eVe)|Op.

Semantics via pointed Kripke structures (W, R, V), w. Nonempty set W, binary
relation R C W?2, valuation V : & — P(W), point w € W.

E.g.,
> K,wkp iff w € V(p),
> K,wE Qp iff K, v |= ¢ for some v s.t. wRv.
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> Pointed model (K, w): (W,R, V), w. o e
> Model (K): (W, R, V). .
odal logic
» Frame (F): (W,R).
We write:
» (W,R,V)E v ifft  (W,R,V),w = ¢ holds for every w € W.

» (W,R)E v iff  (W,R,V) = ¢ holds for every valuation V.
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> Pointed model (K, w): (W, R, V), w. e
> Model (K): (W, R, V). -

» Frame (F): (W,R).

We write:

» (W,R,V)E v ifft  (W,R,V),w = ¢ holds for every w € W.
» (W,R)E v iff  (W,R,V) = ¢ holds for every valuation V.

Every (set of) ML-formula defines the class of frames in which it is valid.
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> Pointed model (K, w): (W,R, V), w. e
> Model (K): (W, R, V). -
» Frame (F): (W,R).
We write:
» (W,R,V)E v ifft  (W,R,V),w = ¢ holds for every w € W.
» (W,R)E v iff  (W,R,V) = ¢ holds for every valuation V.

Every (set of) ML-formula defines the class of frames in which it is valid.

> Fr(p) = {(W,R) | (W,R) = ¢}.
» Fr(lN) ={(W,R) |Vp el :(W,R) = ¢}.
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Which classes of Kripke frames are definable by a (set of) modal formulae.
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Which classes of Kripke frames are definable by a (set of) modal formulae.

Which elementary classes are definable by a (set of) modal formulae.
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Which classes of Kripke frames are definable by a (set of) modal formulae.

Which elementary classes are definable by a (set of) modal formulae.

Frame definability

Examples:
’ Formula | Property of R ‘
Op—p Reflexive  Vw (wRw)

p— O0p Symmetric  Vw, v (wRv — vRw)

Op — O0Op | Transitive  Vw, v, u((wRv A vRu) — wRu)
Op — OOp | Euclidean  Vw, v, u((wRv A wRu) — vRu)
Op — Op Serial Vw3v (wRv)




Goldblatt-Thomason Theorem (1975)

Set ® of atomic propositions. The formulae of ML(®) are generated by:

pu=ploe|(eVe)|Op.

An elementary frame class is M L-definable iff

> it is closed under taking
» bounded morphic images
> generated subframes
> disjoint unions
> and its complement is closed under taking
> ultrafilter extensions.
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Goldblatt-Thomason Theorem (Goranko, Passy 1992)
The formulae of ML([W) are generated by:

pu=p|op|(eVe) | Op | We.

KiwkEWp <« YweW:K,vEep.

An elementary frame class is M L(Id)-definable iff
> it is closed under taking
» bounded morphic images

> and its complement is closed under taking
> ultrafilter extensions.
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What do we study?

Frame definability of the fragment ML(W") of ML(W):

pu=plapl(ene)|(eVe)Op| Cp | e

Frame definability of particular team based modal logics:
» Modal dependence logic MDL.
» Extended modal dependence logic EMDL.
» Modal logic with intuitionistic disjunction ML(®).
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What do we show?

» We give a variant of the Goldblatt-Thomason theorem for ML(™).

» We show that with respect to frame definability:

ML < MDL = EMDL = ML(©) = ML(@H) < ML(D).
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Frame definability in ML([U")

An elementary frame class is M L-definable iff
> it is closed under taking
» bounded morphic images
» generated subframes
» disjoint unions
> and it reflects
> ultrafilter extensions.
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> it is closed under taking
» bounded morphic images

» and it reflects
» ultrafilter extensions.

Every ML(lW")-definable class is ML([W)-definable, but not vice versa.
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Frame definability in ML([U")

An elementary frame class is M L([4)-definable iff
> it is closed under taking
» bounded morphic images

» and it reflects
» ultrafilter extensions.

Every ML(lW")-definable class is ML([W)-definable, but not vice versa.
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Goldblatt-Thomason Theorem for ML([I")

Theorem (Does this suffice?)

An elementary frame class is ML(W™)-definable iff
> it is closed under taking

» generated subframes
» bounded morphic images

» and it reflects
» ultrafilter extensions.

Characterizing
Frame Definability
in Team Semantics
via The Universal

Modality

Jonni Virtema

GbTh theorem




Goldblatt-Thomason Theorem for ML([I")

Theorem (Does this suffice?)

An elementary frame class is ML(W™)-definable iff
> it is closed under taking

» generated subframes
» bounded morphic images

» and it reflects
» ultrafilter extensions.

N()I Something more is needed.
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Reflection of Finitely Generated Subframes

A frame class [ reflects finitely generated subframes if:
whenever every finitely generated subframe of § is in IF, then § is also in F.

Theorem
Every ML([W™)-definable frame class F reflects finitely generated subframes.
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Goldblatt-Thomason theorem for ML(LI)

An elementary frame class F is ML (W™ )-definable iff
[F is closed under taking

» bounded morphic images & generated subframes
and it reflects

> ultrafilter extensions & finitely generated subframes.

" By van Benthem (1993)'s model theoretic argument.
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Team Semantics: Motivation and history Frame Defmabity

in Team Semantics

via The Univer;al
Modality

Logical modelling of uncertainty, imperfect information and functional
dependence in the framework of modal logic.

Jonni Virtema

The ideas are transfered from first-order dependence logic (and
independence-friendly logic) to modal logic.

Historical development:
» Branching quantifiers by Henkin 1959. Team semantics
Independence-friendly logic by Hintikka and Sandu 1989.

v

» Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

IF modal logic by Tulenheimo 2003.
Dependence logic by Vaananen 2007.

v

v

v

Modal dependence logic by Vaananen 2008.




Syntax for modal logic in negation normal form

Definition
Let ® be a set of atomic propositions. The set of formulae for ML(®) is
generated by the following grammar

pu=plop|(eVe)l (@Ap)]| dp|Op,

where p € .

Negations may occur only in front of atomic formulae.
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Team semantics?

1. In this context a team is a set of possible worlds, i.e., if K = (W,R, V) is a
Kripke model then T C W is a team of K.

Characterizing
Frame Definability
in Team Semantics
via The Universal

Modality

Jonni Virtema

Team semantics




- ? Characterizing
Tea m Sem a ntICS H Frame Definability
in Team Semantics
via The Universal
Modality

Jonni Virtema

1. In this context a team is a set of possible worlds, i.e., if K = (W,R, V) is a
Kripke model then T C W is a team of K.

2. The standard semantics for modal logic is given with respect to pointed
models K, w. In team semantics the semantics is given for models and
teams, i.e., with respect to pairs K, T, where T is a team of K.
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1. In this context a team is a set of possible worlds, i.e., if K = (W,R, V) is a
Kripke model then T C W is a team of K.

2. The standard semantics for modal logic is given with respect to pointed
models K, w. In team semantics the semantics is given for models and
teams, i.e., with respect to pairs K, T, where T is a team of K.

Team semantics

3. Some possible interpretations for K, w and K, T:
(a) K,w = ¢: The actual world is w and ¢ is true in w.
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1. In this context a team is a set of possible worlds, i.e., if K = (W,R, V) is a
Kripke model then T C W is a team of K.

2. The standard semantics for modal logic is given with respect to pointed
models K, w. In team semantics the semantics is given for models and
teams, i.e., with respect to pairs K, T, where T is a team of K.

Team semantics

3. Some possible interpretations for K, w and K, T:

(a) K,w = ¢: The actual world is w and ¢ is true in w.
(b) K, T = ¢: The actual world is in T, but we do not know which one it is.
The formula ¢ is true in the actual world.
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1. In this context a team is a set of possible worlds, i.e., if K = (W,R, V) is a
Kripke model then T C W is a team of K.

2. The standard semantics for modal logic is given with respect to pointed
models K, w. In team semantics the semantics is given for models and
teams, i.e., with respect to pairs K, T, where T is a team of K.

Team semantics

3. Some possible interpretations for K, w and K, T:
(a) K,w = ¢: The actual world is w and ¢ is true in w.
(b) K, T = ¢: The actual world is in T, but we do not know which one it is.
The formula ¢ is true in the actual world.
(c) K, T = ¢: We consider sets of points as primitive. The formula ¢ describes
properties of collections of points.
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Kripke/Team semantics for ML is defined as follows. Remember that
K = (W, R, V) is a normal Kripke model and T C W.

Definabilit

K,w ): P = WS V(p). GbTh theorem
K,w = —p < w¢ V(p). Team semantics
KiwkEepAYy & KwkEepand K,wE . el
KiwkEepVy & KwkEkEgo K,wk1. B
K.wkEOp & K,w = forevery w s.t. wRw'. ' i
K,w = Qp < K,w' E ¢ for some w' s.t. wRw'.
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Kripke/Team semantics for ML is defined as follows. Remember that
K = (W, R, V) is a normal Kripke model and T C W.

Definabilit

K. TEp & T C V(p).

K.T=-p & TnV(p) =0.

K. TEeANY & K, TEyeand K,T .
KiwkEeVy & KwkEgpo K,wk=1.

K,w = Op < K,w' | ¢ for every w' s.t. wRw'.
K,w = Op < K,w' | ¢ for some w’ s.t. wRw'.
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Kripke/Team semantics for ML is defined as follows. Remember that
K = (W, R, V) is a normal Kripke model and T C W.

Definabilit

K.TEp & T CV(p). ,
K. TE-p & TnV(ip)=0. Team semranrtics
K, TEoAY & K, TEyand K, T E . Rholesle
K.TEeVY & K TilEgand K, To = for some TyU To = T.
KiwkEOp & K,w | forevery w sit. wRW'.

K,w = Op < K,w' = ¢ for some w' s.t. wRw'.
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Kripke/Team semantics for ML is defined as follows. Remember that
K = (W, R, V) is a normal Kripke model and T C W.

K, TEp < T CV(p).

K, TE-p & TnV(p)=0. Team semantics
K, TEoAY & K, TEyand K, T E .

K, TEeVYy & K, TiEpand K, T, =1 forsome i UT,=T.

K, T DO & K, T'Epfor T ={w |weT, wRw'}.

K,w = Op < K,w' | ¢ for some w’ s.t. wRw'.




Team semantics for modal logic

Kripke/Team semantics for ML is defined as follows. Remember that
K = (W, R, V) is a normal Kripke model and T C W.

K, Tkp = T CV(p)

K, TE-p & TnV(p)=0.

K, TEvANY & K, TEyand K, T E.

K, TEeVYy & K, TiEpand K, Ty =1 forsome iU T, =T.
K., TEOyp < K, T Eepfor T:={wW|weT, wRw'}.

K, TEOp & K, T |= ¢ for some T’ s.t.

Ywe TIw €T :wRw andVw' € T'3Iw € T : wRw'.

Note that K, () = ¢ for every formula .
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Team semantics vs. Kripke semantics

Theorem (Flatness property of ML)
Let K be a Kripke model, T a team of K and ¢ a M L-formula. Then

K. TEy & KwkEkgeforallweT,

in particular
KiwlEe & Kwgke
Note that it also follows that every M /L-formula is downwards closed:

fK,TEpand SC T, then K,S = .
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Modal dependence logic Frame Defmabity
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via The Universal
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Introduced by Vaananen 2008, the syntax modal dependence logic MDL
extends the syntax of modal logic by the clause

dep(P]_, <y Pn; q) )

where p1,...,pp, g are proposition symbols.

Modal dependence
logic
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Introduced by Vaananen 2008, the syntax modal dependence logic MDL
extends the syntax of modal logic by the clause

dep(P]_, <y Pn; q) )
where p1,...,pp, g are proposition symbols.

The intended meaning of the atomic formula Modal dependence

logic

dep(p1, - - -, Pn, q)

is that the truth values of the propositions pi, ..., p, functionally determine the
truth value of the proposition q.




Extended Modal dependence logic Frame Defmabity
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Introduced by Ebbing et al. 2013, the syntax extended modal dependence logic
EMDL extends the syntax of modal logic by the clause

dep(@la ceey @mw) )

where ©1, ..., @, are ML-formulae.

Modal dependence
logic




Extended Modal dependence logic

Introduced by Ebbing et al. 2013, the syntax extended modal dependence logic
EMDL extends the syntax of modal logic by the clause

dep(p1,-- -, o, ¥,
where ©1,...,¢n, ¥ are ML-formulae.
The intended meaning of the atomic formula
dep(1,...,¢n 1)

is that inside a team the truth values of the formulae 1, ..., ¢, functionally
determine the truth value of the formula .
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Modal dependence
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Semantics for MDL and EMDL

The intended meaning of the atomic formula

dep(p1; - - -, Pn, q)

is that the truth value of the propositions ps, ...

truth value of the proposition q.

, pn functionally determines the
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The intended meaning of the atomic formula

Jonni Virtema

dep(p1; - - -, Pn, q)

is that the truth value of the propositions ps, ..., p, functionally determines the
truth value of the proposition q.

The semantics for MDL extends the sematics of ML, defined with teams, by

the fO”OW|ng Clause: Modal dependence
K7 T ):dep(Pla---apmq) e

if and only if Ywy,wp € T

/\ (w1 € V(pi) & wo € V(pj)) = (w1 € V(q) & wo € V(q)).

i<n
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ML(@): add a different version of disjunction @ to modal logic with the
semantics:

» K. TEepQY <= K, TEypo K, T 1.

Dependence atoms are definable in ML(@) (Vaananen 09):

K; T |: dep(PL <+« Pns q) <~ K, T ‘: \/SEF(95 A (q Q “q)), Il\;lgicclaldependence
where F is the set of all {p1,..., p,}-assignments, and 05 is the formula
/\ign p;?(pi), Where pIJ' = —p; and pIT = p;.




Expressive Power

Theorem (Ebbing, Hella, Meier, Miiller, V., Vollmer 13)

MDL < EMDL < ML(®).

Theorem (Hella, Luosto, Sano, V. 14)
ML(@) < EMDL. Consequently, EMDL = ML(D).
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Expressive Power

Theorem (Ebbing, Hella, Meier, Miiller, V., Vollmer 13)

MDL < EMDL < ML(®).

Theorem (Hella, Luosto, Sano, V. 14)
ML(@) < EMDL. Consequently, EMDL = ML(D).

Theorem (Gabbay, van Benthem)
A class C of pointed Kripke models is definable in ML if and only if C is closed
under k-bisimulation for some k € N.

Theorem (Hella, Luosto, Sano, V. 14)

A nonempty class C is definable in ML(®@) if and only if C is downward closed
and there exists k € N such that C is closed under team k-bisimulation.

Characterizing

Frame Definability

in Team Semantics

via The Universal
Modality
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Modal dependence
logic
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Frame definability in team semantics Frame Desmabiity
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Def. K= iff YVTCW: K, TEe (iff K,WIEyp) Jonni Virtema
It is easy to show that MDL = EMDL.
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in team semantics
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It is easy to show that MDL = EMDL.

Let ¢ be the dependence atom dep(#1,...,%,), let k be the modal depth of ¢,
and let pi,..., p, be distinct fresh proposition symbols. Define

@ = ( /\ mj /\ (pj <> ¥j)) — dep(p1, ..., pn)- Frame definability

0<i<k 1<j<n in team semantics




. i - . Characterizin
Frame definability in team semantics Frame Defnabilty
in Team Semantics
via The Univer:al
Modality

Def. K= iff YVTCW: K, TEe (iff K,WIEyp) Jonni Virtema
It is easy to show that MDL = EMDL.

Let ¢ be the dependence atom dep(#1,...,%,), let k be the modal depth of ¢,

and let pi,..., p, be distinct fresh proposition symbols. Define
SO* = ( /\ DI /\ (pJ A ’l’[)-l)) — dep(pl’ Tt pn) : Frame definability
0<i<k 1<j<n in team semantics

Next we will show that ML(©) = ML(WT).
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Corollary

With respect to frame definability ML(@™) and \/ @ ML coincide.
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Jonni Virtema

Every formula is equivalent to a formula of the form

@90/7

i<n

where each ¢; is an M L-formula.

Frame definability

With respect to frame definability ML(©) and \/ @ ML coincide. in team semantics

(Already in the level of validity in a model.)




Results

Theorem

An elementary frame class I is £-definable
(L € {ML(Q), MDL,EMDL, ML(WT)}) iff
[F is closed under taking
» bounded morphic images & generated subframes
and it reflects

> ultrafilter extensions & finitely generated subframes.

Theorem

With respect to frame definability:
ML < MDL = EMDL = ML(Q) = ML(WT) < ML(W).
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Bounded morphism and Ultrafilter Extension

|
f:(W,R)— (W', R') is a bounded morphism if:

» (Forth) wRv implies f(w)R'f(v)

» (Back) f(w)R'b implies: f(v) = b and wRv for some v

|
(Uf(W), R*¢) is the ultrafilter extension of (W, R) where:

» Uf(W) is the set of all ultrafilters &/ C P(W).
> URMU' iff Y € U’ implies R7I[Y] €U forall Y C W.
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