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> In most studied logics formulae are evaluated in a single state of affairs.
E.g.,
> a first-order assignment in first-order logic,
> a propositional assignment in propositional logic,
» a possible world of a Kripke structure in modal logic.
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> In most studied logics formulae are evaluated in a single state of affairs.

Team Semantics
Eg.,

> a first-order assignment in first-order logic,

> a propositional assignment in propositional logic,

» a possible world of a Kripke structure in modal logic.

» In team semantics sets of states of affairs are considered.
Eg.,
> a set of first-order assignments in first-order logic,

> a set of propositional assignments in propositional logic,
» a set of possible worlds of a Kripke structure in modal logic.

» These sets of things are called teams.




Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of
dependence such as functional dependence and inclusion dependence.

Historical development:
» Branching quantifiers by Henkin 1959.
» Independence-friendly logic by Hintikka and Sandu 1989.

» Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

> IF modal logic by Tulenheimo 2003.
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Team Semantics: Motivation and History

Logical modelling of uncertainty, imperfect information, and different notions of
dependence such as functional dependence and inclusion dependence.

Historical development:

>

>

>

Branching quantifiers by Henkin 1959.
Independence-friendly logic by Hintikka and Sandu 1989.

Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

IF modal logic by Tulenheimo 2003.
Dependence logic by Vaananen 2007.
Modal dependence logic by Vaananen 2008.

Introduction of other dependency notions to team semantics such as
inclusion, exclusion, and independence. Galliani, Gradel, Vaananen.

Generalized atoms by Kuusisto.
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Grammar of propositional logic PL:

The Logics

pu=plpl(eVe)|(pAp).

Extensions PL by inclusion atoms, independence atoms, and classical negation.

Q=P P S AL qn | T Lp G| ~e.

The logics are denoted by PL[ L., ~|, PL[C, ~], etc.
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The Logics

s(p) =1
s(p) =0
sEpandskEv¢
sEporskEy
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Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP — {0, 1} with the same

domain.

XEp
X E-p
XEpAy
sEeVY

(I A

Vse X:s(p)=1
Vse X :s(p)=0
XEpand X E9
sEporsky
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A propositional team is a set of assigments s : PROP — {0, 1} with the same
domain.

The Logics

XEp & VseX:s(p)=1
XE-p & VseX:s(p)=0
XEeNYy & XEgpand X =9
XEeVYy & YEeand Z =1 forsome YUZ =X

Note that () = ¢ for every PL-formula .
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A propositional team is a set of assigments s : PROP — {0, 1} with the same Logic
domain. Jonni Virtema

The Logics
XEp & VseX:s(p)=1
XE-p & VseX:s(p)=0
XEeANYy & XEgpand X =9

XEeVYy & YEeand Z =1y forsome YUZ =X

Note that () = ¢ for every PL-formula ¢.
For every PL-formula ¢ the following holds:

XEe & VseX:skEeo
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We consider, e.g., the logics PL[L.,~]| PL[C, ~].

The Logics

XEpPCqG & VseXdteX:s(p)=t(q)
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We consider, e.g., the logics PL[L.,~]| PL[C, ~]. The Logics

XEpPCqG & VseXdteX:s(p)=t(q)
r & Vs teX: ifs(p)=t(p)
then there exists u € X : u(pq) = s(pq) and u(r) = t(r)
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We consider, e.g., the logics PL[L.,~]| PL[C, ~]. The Logics

XEpPCqG & VseXdteX:s(p)=t(q)
r & Vs teX: ifs(p)=t(p)
then there exists u € X : u(pq) = s(pq) and u(r) = t(r)
XEr~p o XiEe
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Most connectives studied in team sematics can be defined in PL[~].

Expressive Power

The connectives below can be defined in PL[~] with polynomial blow up.

XEpoy & XEgpo XEY,
XEpoy o VY, ZCX:ifYUZ=X,then Y=y or Z =1,
XEe—=19v < VYCX:ifYEgp thenY E 1,

X E max(p1,...,pn) < {(s(p1),...,s(pn)) | s € X} ={0,1}".
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Most connectives studied in team sematics can be defined in PL[~].

Expressive Power

The connectives below can be defined in PL[~] with polynomial blow up.

XEv0y & XEgpo X1,

XEe®y & VY, ZCX: fYUZ=X,thenY EyporZE,
XEe—=19v < VYCX:ifYEgp thenY E 1,
X ':max(plr-'?pn) Ang {(S(p1)7_..,s(pn))ISEX}:{O,].}n.

Atoms C and L. can be expressed in PL[~] with exponential blow up.
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PTIME Reductions Between Validity and Satisfiability

Note: X = ~(p A —p) iff X is non-empty.
For ¢ € PL|[C, ~], define

@sar := max(X) = ((pV =p) V(e A ~(pA-p))),
@vaL = max(x) A (~(p A —p) = ),

where X lists the variables of ¢
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NOte X ): N(p /\ _|p) ifF X iS nOn—empty Jonni Virtema

For ¢ € PL|[C, ~], define

Expressive Power

@sar := max(X) = ((pV =p) V(e A ~(pA-p))),
@vaL = max(x) A (~(p A —p) = ),

where X lists the variables of ¢

> o is satisfiable iff psaT is valid.

> o is valid iff pyar, is satisfiable.
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Logic SAT VAL MC
PL NPO© coNP? NC; !
PE[dep(-)] Complexity
PL[L]
PLIC]
PL[Lc,~]
PL[C, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.
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6 Hella.




Complexity of
Propositional

Complexity Results Proposiond
Indefz;idcence
Logic SAT VAL MC
PL NP O coNP? NC; !
PL[dep(-)] NP3 NEXPTIME* NP2 ool
PL[L] NP in coNEXPTIMENP NP
PLIC] EXPTIME® coNP in P6
PL[Le,~]
PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.




Complexity Results

Logic SAT VAL MC
PL NP coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
PLIL] NP in coNEXPTIMENP NP
PL[C] EXPTIME® coNP in PO
PL[Lc,~] AEXPTIME(poly) AEXPTIME(poly) PSPACE
AEXPTIME(poly)  AEXPTIME(poly)  PSPACE

PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.
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AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations” .

We relate AEXPTIME(poly) with alternating polynomial time Turing machines Complexity
that query to oracles obtained from a quantifier prefix of polynomial length.
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AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations” .

We relate AEXPTIME(poly) with alternating polynomial time Turing machines Complexity
that query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines to
the satisfiability problems of PL[ L., ~] and PL[C, ~].
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The classes and of the exponential time hierarchy are characterized
by polynomial-time constant-alternation oracle Turing machines that query to k
oracles (Orponen 1983).

Theorem

Complexity

A set A belongs to the class AEXPTIME(poly) iff there exist a polynomial f and
a polynomial-time alternating oracle Turing machine M such that, for all x,

x € Aiff Q1A ... Qr(n)Af(n)(M accepts x with oracles (Ay, ..., A¢(n))),

where n is the length of x and Q1,. .., Qf(, alternate between 3 and V, i.e

Qiy1 € {V, I\ {Qi}.
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Alternating Turing machine can be replaced by a sequence of word quantifiers
over a deterministic Turing machine (Chandra, Kozen, and Stockmeyer 1981).

Jonni Virtema

Theorem

A set A belongs to the class AEXPTIME(poly) iff there exists a polynomial-time
deterministic oracle Turing machine M* such that x € A iff Complexity

QuA1 - .. Qe(n)Ar(n) QLY - - - Qg(m)Va(n)
(M* accepts (X, Y1, - ., Yg(n)) with oracle (Ay, ..., Af(n)));

where @1, ..., Q¢(ny and Qy, .. ., Qé

and Y, and each y; is a g(n)-ary sequence of propositional variables where n is
the length of x.

(m) @r€ alternating sequences of quantifiers 3

g is a polynomial that bounds the running time of M.




From Turing Machines to SAT(PL[C, ~])

The whole computation of an oracle Turing machine is encoded to a team X.

Encoded information is accessed via expressions of the form:

ds € X s.t. {s} =, where ¢ isin PL.

In PL[~] the above is written as X |= ~—p.
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The membership of a binary string 3 in an oracle A; is expressed by
X ‘: N—|((7: 3/\ F: bln(l)) Complexity
Tuple g lists the propositions used to encode the content of oracles.

Tuple 7" encodes the indices of the oracles.




Simulating Quantification Froaorsl
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Recall:

» The whole computation is encoded in a team.

» Idea of encoding: Js € X s.t. {s} F ¢.

» X Eey iff VY, Zst. YUZ=X:Y EporZE.
XEpvey iff JY,Zst. YUZ=X: Y Egpand Z .

Complexity

v
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Recall:
» The whole computation is encoded in a team.
» Idea of encoding: Js € X s.t. {s} F ¢.
» X Eey iff VY, Zst. YUZ=X:Y EporZE.
» XE=Epvy iff Y, Zst. YUZ=X: Y Eypand Z = 1.

Complexity

We use ® to simulate universal quantification of relations and points.

We use V to simulate existential quantification of relations and points.
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Existential quantification of the oracle A;: r=Dbin(i) V (a A ).

Complexity

Formula « takes care of the uniformity. (C or L. needed)
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Our encoding uses variables p1, ..., pn: max(p1,...,Pn)

Existential quantification of the oracle A;: r=Dbin(i) V (a A ).

Complexity

Formula « takes care of the uniformity. (C or L. needed)

a:=max(y)ANy L gr

r encodes names of oracles, g encodes content of oracles, y encodes everything
else.
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SAT(PL[Lc, ~]) is AEXPTIME(poly)-complete.

Hardness: Done.

Membership: Guess a possibly exponential-size team X and do APTIME model
checking. [

Complexity
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Theorem
SAT(PL[Lc,~]) is AEXPTIME(poly)-complete.

Proof.

Hardness: Done.
Membership: Guess a possibly exponential-size team X and do APTIME model
checking. [

Complexity

Corollary

VAL(PL[Lc,~]) is AEXPTIME(poly)-complete.
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SAT(PL[C,~]) and VAL(PL[C,~]) are AEXPTIME(poly)-complete. Complexty
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Theorem
Complexity

SAT(PL[C, ~]) and VAL(PL[C, ~]) are AEXPTIME(poly)-complete.

MC(PL[C, ~]) and MC(PL[ L., ~]) are PSPACE-complete
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VAL(PL[C]) is coNP-complete

Hardness: VAL(PL) is coNP-complete.
Membership:

1. PL[C] is union closed.

Complexity

2. ¢ € PL[C] is valid iff ¢ is valid on singleton teams.
3. On singleton teams inclusion atoms can be eliminated.
4. Check validity of the PL-translatee.
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Logic SAT VAL MC
PL NP coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
PL[L] NP in coNEXPTIMENP NP
PL[C] EXPTIME® coNP in PO
PL[Lc,~] AEXPTIME(poly) AEXPTIME(poly) PSPACE
AEXPTIME(poly)  AEXPTIME(poly) PSPACE

PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.
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Complexity Results

Thanks!

Logic SAT VAL MC
PL NP0 coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
PL[L] NP in coNEXPTIMENP NP
PL[C] EXPTIME® coNP in PO
PL[Lc,~] AEXPTIME(poly) AEXPTIME(poly) PSPACE
AEXPTIME(poly)  AEXPTIME(poly) PSPACE

PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.
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