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Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.
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Team Semantics: Motivation and History
Logical modelling of uncertainty, imperfect information, and different notions of
dependence such as functional dependence and independence. Related to similar
concepts in statistics, database theory etc.

Historical development:
I Branching quantifiers by Henkin 1959.(

∀x∃y
∀x ′∃y ′

)
ϕ(x , y , x ′, y ′)

I Independence-friendly logic by Hintikka and Sandu 1989.
∀x∃y∀x ′∃y ′/{x , y}ϕ(x , y , x ′, y ′)

I Compositional semantics for independence-friendly logic by Hodges 1997.
(Origin of team semantics.)

I Dependence logic and modal dependence logic by Väänänen 2007.
I Introduction of other dependency notions to team semantics such as

inclusion, exclusion, and independence. Galliani, Grädel, Väänänen.
I Generalised atoms by Kuusisto (derived from generalised quantifiers).
I Multiteam and polyteam semantics by Hannula et al.
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Inclusion logics in first-order setting

We study logics with inclusion dependencies:
For a set of first-order assignments X

X |= ~x ⊆ ~y iff ∀s ∈ X∃s ′ ∈ X : s(~x) = s ′(~y).

In first-order setting FO(⊆) has very interesting properties:

I FO(⊆) has the same expressive power as posGFP.

I FO(⊆) with strict semantics has the same expressive power as ESO.

I Fragments of FO(⊆) with strict semantics capture NTIMERAM(nk), fixed k .
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Inclusion logics in propositional setting

For a set of propositional assignments X and ~ϕ, ~ψ ∈ PL

X |= ~ϕ ⊆ ~ψ iff ∀s ∈ X∃s ′ ∈ X : s(~ϕ) = s ′(~ψ).

In propositional setting PL(⊆) and ML(⊆) have interesting properties:
I PL(⊆) definable classes of propositional teams are exactly those C s.t.

I ∅ ∈ C and
I C is union closed (X ∈ C,Y ∈ C ⇒ X ∪ Y ∈ C).

I ML(⊆) definable classes of Kripke models with teams are those C s.t.
I (K, ∅) ∈ C, for every K,
I C is union closed ((K,X ) ∈ C, (K,Y ) ∈ C ⇒ (K,X ∪ Y ) ∈ C),
I C is closed under team k-bisimulation for some k .
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Propositional team semantics

Syntax of propositional logic:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ)

Semantics via propositional assignments:

p q r

s 0 1 1
s |= q ∧ r

Team semantics / semantics via sets of assignments:

p q r

s 0 1 1
t 1 1 0
u 0 1 0

{s, t, u} |= q, {s, t} |= p ∨ r
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Team semantics

We want that for each formula ϕ of propositional logic and for each team X

X |= ϕ iff ∀s ∈ X : s |= ϕ.
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Team semantics

We want that for each formula ϕ of propositional logic and for each team X

X |= ϕ iff ∀s ∈ X : s |= ϕ.

We define that

X |= p iff ∀s ∈ X : s(p) = 1

X |= ¬p iff ∀s ∈ X : s(p) = 0

X |= ϕ ∧ ψ iff X |= ϕ and X |= ψ

X |= ϕ ∨ ψ iff Y |= ϕ and Z |= ψ,

for some Y ,Z ⊆ X such that Y ∪ Z = X .
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Strict team semantics

We want that for each formula ϕ of propositional logic and for each team X

X |=s ϕ iff ∀s ∈ X : s |= ϕ.

We define that

X |=s p iff ∀s ∈ X : s(p) = 1

X |=s ¬p iff ∀s ∈ X : s(p) = 0

X |=s ϕ ∧ ψ iff X |=s ϕ and X |=s ψ

X |=s ϕ ∨ ψ iff Y |=s ϕ and Z |=s ψ,

for some Y ,Z ⊆ X such that Y ∪ Z = X

and Y ∩ Z = ∅.
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Propositional inclusion logic

We extend PL by inclusion atoms: (p1, p2) ⊆ (q1, q2)

”truth values that appear for p1, p2 also appear as truth values for q1, q2”.

p q r

s 1 0 0
t 1 1 1
u 0 1 0

{s, t} 6|= (p, q) ⊆ (q, r), {s, t} |= (p, p) ⊆ (q, r)

Define ϕ :=
(
p ∧ (p ⊆ r)

)
∨
(
q ∧ (q ⊆ r)

)
. Now

{s, t, u} |= ϕ, but {s, t, u} 6|=s ϕ.
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Important decision problems

Model checking:
Input: A team X and a formula ϕ.
Output: Does X |= ϕ hold?

Satisfiability:
Input: A formula ϕ.
Output: Does there exists a non-empty team X s.t. X |= ϕ?

Validity:
Input: A formula ϕ.
Output: Does X |= ϕ hold for every non-empty team X?
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Complexity results

Satisfiability Validity Model checking

strict lax strict lax strict lax

PL NP [Cook 71, Levin 73] coNP [Cook 71, Levin 73] NC1 [Buss 87]
PL(⊆) EXPTIME [†] EXPTIME [†] coNP coNP [‡] NP P

ML PSPACE [Ladner 77] PSPACE [Ladner 77] P [Clarke et al. 86]
ML(⊆) EXPTIME [†] EXPTIME [†] coNEXPTIME-h coNEXPTIME-h NP P

† Hella et al. 2015, ‡ Hannula et al. 2015
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Proof techniques

I MC(PL(⊆)) is P-hard: Reduction from the monotone circuit value problem.

I MC(ML(⊆)) ∈ P: Recursive monotone labelling algorithm.

I MC(PLs(⊆)) is NP-hard: Reduction from the set splitting problem.

I MC(MLs(⊆)) ∈ NP: Brute force algorithm.

I VAL(ML(⊆)) is coNEXPTIME-hard: Reduction from the complement of
DQBF.
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Monotone circuit value problem

Monotone circuit is a finite directed, acyclic graph in which each node is either:

I an input gate labelled with a Boolean variable xi ,

I a disjunction gate with indegree 2,

I a conjunction gate with indegree 2.

There is exactly one node with outdegree 0, called the output gate.

Decision problem:

Input: Monotone circuit C and values for the Boolean variables xi .

Output: Is the value of the output gate 1?

Monotone circuit value problem is P-complete.
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Idea of the reduction

I Consider each gate si as an assignment s.t. si (pi ) = 1 and si (pj) = 0.

I If sk is a disjunction gate of si and sj then si (pk=i∨j) = 1.

After skipping some technicalities we have that

X |= > ⊆ p0 iff s0 ∈ X

X |= pi ⊆ pj iff si ∈ X implies sj ∈ X

X |= pk ⊆ pk=i∨j iff sk ∈ X implies that si ∈ X or sj ∈ X

The idea is that gates that are in the team X have a value 1.

Let X be the set of Boolean gates and those input gates that get the input 1.
Now

X |= ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨) iff output of the circuit is 1.
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P algorithm for MC(PL(⊆)) and MC(ML(⊆))

Important properties:

I Each team X has a unique maximal subteam satisfying a given formula ϕ.

I For literals maxsub(X , ϕ) is computable in polynomial time.

Idea of the algorithm checking whether X |= ϕ:

1. Build the syntactic tree of ϕ and label each of its nodes with X .

2. Bottom up part of the algorithm:

2.1 For literals ϕ labelled by Y , replace Y by maxsub(Y , ϕ).
2.2 For other nodes; update their label depending on their connective, their

previous label and their child nodes new labels.

3. Top down part of the algorithm:

3.1 Starting from root, update labels depending on the connective, previous label
and the parent nodes new label.

4. Go to 2.

The labelling algorithm is decreasing and each round takes only polynomial time.
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Set splitting problem

Set splitting problem is the following decision problem:

Input: A finite family F = {S1, . . . ,Sn} of subsets of a finite set S .

Output: Do there exist subsets L ⊆ S and R ⊆ S such that:
I L and R is a partition of S ,
I for each Si ∈ F there exists a, b ∈ Si s.t. a ∈ L and b ∈ R.

Set splitting problem is NP-complete.
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Idea of the reduction from set splitting

Let F = {Q1, . . .Qn}, S = {si , . . ., sk} be an instance of the problem.

I Consider each point si as an assignment s.t. si (pi ) = 1 and si (pj) = 0.

I Sets Qj are encoded s.t. si (qj) = 1 iff si ∈ Qj .

Define X := {s1, . . . , sk}. The following (almost) now holds

X |=
( ∧
i≤n
> ⊆ qi

)
∨
( ∧
i≤n
> ⊆ qi

)
iff answer to set splitting is yes.
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VAL(ML(⊆)) is coNEXPTIME-hard

I DQBF is a NEXPTIME-complete generalisation of QBF.

I We give a reduction from the complement of DQBF to VAL(ML(⊆)).

I The proof: in the ArXiv-version of the paper.
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What did we show?

Satisfiability Validity Model checking

strict lax strict lax strict lax

PL NP [Cook 71, Levin 73] coNP [Cook 71, Levin 73] NC1 [Buss 87]
PL(⊆) EXPTIME [†] EXPTIME [†] coNP coNP [‡] NP P

ML PSPACE [Ladner 77] PSPACE [Ladner 77] P [Clarke et al. 86]
ML(⊆) EXPTIME [†] EXPTIME [†] coNEXPTIME-h coNEXPTIME-h NP P

† Hella et al. 2015, ‡ Hannula et al. 2015
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What did we show? THANKS!

Satisfiability Validity Model checking

strict lax strict lax strict lax

PL NP [Cook 71, Levin 73] coNP [Cook 71, Levin 73] NC1 [Buss 87]
PL(⊆) EXPTIME [†] EXPTIME [†] coNP coNP [‡] NP P

ML PSPACE [Ladner 77] PSPACE [Ladner 77] P [Clarke et al. 86]
ML(⊆) EXPTIME [†] EXPTIME [†] coNEXPTIME-h coNEXPTIME-h NP P

† Hella et al. 2015, ‡ Hannula et al. 2015
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