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Logics of dependence and independence

Probabilistic independence logic is the extension of first-order logic with conditional
independence

Defined as other modern logics for dependence and independence:

Base logic

First-order

Modal

Propositional

New atoms

Dependence

Independence

Inclusion

Historical predecessors: First-order logic + richer quantification of variables

I Partially ordered quantifiers [Henkin, 1961]

I Independence-friendly logic [Hintikka and Sandu, 1989]
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Team semantics

Compositional semantics for complex dependence statements by team semantics
[Hodges, 1997]

Team = set of objects (assignments, possible worlds, Boolean assignments)

Employee Department Salary

Alice Math 50k
Bob CS 40k

Carol Physics 60k
David Math 80k

New atoms = basic dependence statements about teams
(e.g, Employee determines Salary)

{∀,∃,2,3,∧,∨} for complex dependence statements



Reasoning about dependencies

Dependence and independence pivotal notions in many areas (databases, social choice,
quantum foundations, ...)

Team logics can be used to express and formally prove results in these fields

I Arrow’s theorem [Pacuit and Yang, 2016]

I Bell’s theorem [Hyttinen et al., 2015]

I Implication problems for data dependencies [Hannula and Kontinen, 2016]

No “general” proof system: validity problem usually non-arithmetical.



Qualitative vs. quantitative dependence

Team logics can reason only about qualitative (relational) dependencies.

What about quantitative (probabilistic) dependencies?

Qualitative:

Functional dependency X → Y

Multivalued dependency X � Y

Inclusion dependency X ⊆ Y

Quantitative:

Marginal independence X ⊥⊥ Y

Conditional independence
X ⊥⊥ Y | Z

Identical distribution of X and Y



Probabilistic team semantics

Basic concepts:

I Probabilistic team = probability distribution on a finite team [Durand et al., 2018]

I Quantitative atoms (e.g., conditional independence, identical distribution)

I {∀,∃,∧,∨} for complex probability statements

Probabilistic independence logic = first-order logic + conditional independence

Cf. recent probabilistic and quantitative approaches to separation logic
[Barthe et al., 2020, Batz et al., 2019]



Example
thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

alarm

thief,cat T F

TT 0.9 0.1
TF 0.8 0.2
FT 0.1 0.9
FF 0 1

From the Bayesian network above we obtain that the joint probability distribution for
t, c , g , a can be factorized as

P(t, c , g , a) = P(t) · P(c | t) · P(g | t, c) · P(a | t, c)



Example
thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

alarm

thief,cat T F

TT 0.9 0.1
TF 0.8 0.2
FT 0.1 0.9
FF 0 1

If additionally we have
φ := t = F → g = F

(i.e., guard never raises alert in absence of thief), the two bottom rows of the
conditional probability table for guard become superfluous.



Example
thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

alarm

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

Given
φ := tca ≈ tcg

(i.e., conditioned on thief and cat, alarm and guard are identically distributed),
then the conditional probability tables for alarm and guard are identical and one of
them can be removed.



Example
thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F

TT 0.45 0.55
TF 0.4 0.6
FT 0.05 0.95
FF 0 1

alarm

thief,cat T F

TT 0.9 0.1
TF 0.8 0.2
FT 0.1 0.9
FF 0 1

Given
φ := ∃x(tcg ≈ tcx ∧ tcga ⊥⊥ y ∧ x = T ↔ ay = TT )

(i.e., guard is of a factor P(y = T ) less sensitive to raise alert than alarm for any
given thief and cat), it suffices to store the conditional probability table for alarm
and the probability P(y = T ).



Example
thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

P(Y = T ) = 0.5

alarm

thief,cat T F

TT 0.9 0.1
TF 0.8 0.2
FT 0.1 0.9
FF 0 1

Given
φ := ∃x(tcg ≈ tcx ∧ tcga ⊥⊥ y ∧ x = T ↔ ay = TT )

(i.e., guard is of a factor P(y = T ) less sensitive to raise alert than alarm for any
given thief and cat), it suffices to store the conditional probability table for alarm
and the probability P(y = T ).



Reasoning about probabilistic dependencies?

The implication problem for conditional independence X ⊥⊥ Y | Z

Input : A finite set Σ ∪ {σ} of CI statements
Output: Yes iff every finite probability distribution satisfying Σ satisfies also σ.

Theorem
The implication problem for conditional independence is:

(1) in Π0
1 [Khamis et al., 2020]

(2) in EXPSPACE, if restricted to binary domains [Hannula et al., 2019]

I Decidability open

I Reduces to validity of probabilistic independence logic extended with classical
negation; this problem is Π0

1-complete



Probabilistic independence logic FO(⊥⊥c)

Syntax: FO (negation normal form) + ~y ⊥⊥~x ~z (only positively)

Semantics: Defined in terms of a finite structure A and a probabilistic team X
(1) Team = a set of variable assignments with a shared domain

(2) Probabilistic team = a pair X = (X , p), where X is a finite team and
p : X → [0, 1] a probability distribution



Semantics of FO(⊥⊥c): probabilistic independence atoms

Let X = (X , p) be a probabilistic team and ~x , ~a be tuples of variables and values.

|X|~x=~a :=
∑
s∈X

s(~x)=~a

p(s)

The semantics of probabilistic conditional independence atoms ~y ⊥⊥~x ~z :

A |=X ~y ⊥⊥~x ~z iff, for all assignments s for ~x , ~y , ~z

|X|~x~y=s(~x~y) · |X|~x~z=s(~x~z) = |X|~x~y~z=s(~x~y~z) · |X|~x=s(~x).



Semantics of FO(⊥⊥c): the first-order part I

Definition ([Durand et al., 2018])

Let A be a finite structure and X = (X , p) a probabilistic team.

A |=X ` ⇔ A |=s ` for all s ∈ X such that p(s) > 0

(when ` is a first-order literal)

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ



Semantics of FO(⊥⊥c): the first-order part II

Disjunction via convex combinations:

A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ,

where X = α · Y + (1− α) · Z, for some α ∈ [0, 1].

s0

s1

s2

Y
Z

Z

Z
Y

NB. The empty set is considered as a probabilistic team.



Semantics of FO(⊥⊥c): the first-order part III

Quantification introduces a new column:

A |=X ∀xψ ⇔ A |=X[A/x] ψ

A |=X ∃xψ ⇔ A |=X′ ψ, for some X′ such that X′ � Dom(X) = X

s0

s1

s2

si (a/x)

A→ { 1

|A|
}

A→ { 1

|A|
}

A→ { 1

|A|
}

s0

s1

s2

si (a/x)

X[A/x ] X′



Descriptive complexity

This paper: Determine the descriptive complexity of probabilistic independence logic

I Offers a machine independent description of complexity classes:
I Time/Space used by a machine to decide a problem
⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.

I Many characterisations are known:
I Fagin’s Theorem 1973: Existential second-order logic characterises NP.
I Immerman & Vardi 1980s: Least fixed point logic LFP characterises P on ordered

structures.



Descriptive complexity

This paper: Determine the descriptive complexity of probabilistic independence logic

Descriptive complexity in team logics:

1. Independence logic FO(⊥c) equi-expressive to ESO =⇒ captures NP.

2. Inclusion logic FO(⊆) equi-expressive to positive greatest fixed point-logic =⇒
captures P on ordered structures [Galliani and Hella, 2013].

How to approach complexity in probabilistic team logics?



BSS model of computation

We consider Blum-Shub-Smale machines [Blum et al., 1989]

Input: finite string of reals, placed on bi-infinite tape (. . . , x−1, x0, x1, . . .)
Output: 0 or 1 (decision problems)

A program is a finite list of instructions:

I Arithmetic instructions xi ← (xj + xk), xi ← (xj − xk), xi ← (xj × xk), xi ← c .

I Shift left or right.

I Branch on inequality, e.g., if x0 ≤ 0 then go to α; else go to β.



BSS instructions



BSS instructions

r1 r2 r3 r4 r5 r6 r7 r8 r9

Addition: [2] := [-3]+[0]

r1 r2 r3 r4 r5 r6 r2+r5 r8 r9



BSS instructions

r1 r2 r3 r4 r5 r6 r7 r8 r9

r1 r3 r4 r5 r6 r7

Assignment: [-3] := c1

c1 r8 r9



BSS instructions

Shift left

r1 r2 r3 r4 r5 r6 r7 r8 r9

r2 r3 r4 r5 r6 r7 r8 r9 0



Nondeterministic BSS

Nondeterminism is implemented by guessing a certificate:

L ∈ NPR
there exists a BSS machine M s.t.
x ∈ L iff ∃y ∈ R∗ s.t. M accepts (x , y) in polynomial time in x

Example NPR-complete problem: Is there a real root for a polynomial of degree 4?



BSS machines and logics on R-structures

R-structures [Grädel and Meer, 1995] consist of a finite structure A together with an
ordered field of reals and a finite set of weight functions from A to R.

(particular case of metafinite structures [Grädel and Gurevich, 1998])

Helsinki

Hasselt

Saarbrücken

Sapporo

1594

223

8832

7172

1665

8734



BSS machines and logics on R-structures cont.

Descriptive complexity w.r.t. R-structures via BSS machines:

Theorem ([Grädel and Meer, 1995])

ESOR[+,×,≤, (r)r∈R]≡ NPR

Two-sorted variant of ESO with

1. first-order logic on the finite structure A

2. existential quantification of functions from A to reals

3. constants r for each real

4. complex numerical terms by {+,×}
5. inequality ≤ between numerical terms

Too strong for FO(⊥⊥c): 1) Lacks negation, 2) Quantification over [0, 1]
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S-BSS model of computation

Input: finite string of reals, placed on bi-infinite tape (. . . , x1, x0, x1, . . .)
Output: 0 or 1 (decision problems)

A program is a finite list of instructions:

I Arithmetic instructions xi ← (xj + xk), xi ← (xj − xk), xi ← (xj × xk), xi ← c

I Shift left or right
I Separate branch on inequality (ε− < ε+ are real numbers):

if x0 ≤ ε− then go to α;
else if x0 ≥ ε+ then go to β;
else reject.



Nondeterministic S-BSS

Nondeterminism here implemented by guessing a certificate from [0, 1]:

L ∈ S-NP[0,1]
there exists an S-BSS machine M s.t.
x ∈ L iff ∃y ∈ [0, 1]∗ s.t. M accepts (x , y) in polynomial time in x

L ∈ NPR
there exists a BSS machine M s.t.
x ∈ L iff ∃y ∈ R∗ s.t. M accepts (x , y) in polynomial time in x



Main result: FO(⊥⊥c) and real computation

Descriptive complexity of FO(⊥⊥c) in real computation:

Theorem
FO(⊥⊥c) ≡ L-ESO[0, 1][+,×,≤] ≡ S-NP0

[0,1]

I “Loose fragment”: no negated atoms ¬i ≤ j between two numerical terms

I Existential second-order quantification over functions from Dom(A) to [0, 1]

I Superscript 0: only machine constants 0 and 1 allowed

NB. The result holds for formulae of FO(⊥⊥c)

What is the relationship between S-NP[0,1] and NPR?



Main result cont.: Separation of BSS and S-BSS computation

Theorem ([Blum et al., 1989])

Every language decidable by a (deterministic) BSS machine is a countable disjoint
union of semi-algebraic sets.

Theorem
Every language decidable by

I a deterministic S-BSS machine, or

I a time bounded [0, 1]-nondeterministic S-BSS machine

is a countable disjoint union of closed sets in Rn.



Main result cont.: Separation of BSS and S-BSS computation

Theorem
Every language decidable by

I a deterministic S-BSS machine, or

I a time bounded [0, 1]-nondeterministic S-BSS machine

is a countable disjoint union of closed sets in Rn.

Proof.
I The set of strings s ∈ Rn accepted by an S-BSS machine M in time (at most) t

can be described by an L-EFO[0,1] formula in (R,+,×,≤, 0, 1).

I Every n-ary relation defined by some L-EFO[0,1] formula is closed in Rn.



Main result cont.: Separation of BSS and S-BSS computation

Theorem
Every language decidable by

I a deterministic S-BSS machine, or

I a time bounded [0, 1]-nondeterministic S-BSS machine

is a countable disjoint union of closed sets in Rn.

Theorem
S-NP[0,1] < NPR



Main result: FO(⊥⊥c) and real computation cont.

This separation holds also wrt. machines with constants 0, 1

Descriptive complexity of FO(⊥⊥c) thus strictly below NP0
R:

Corollary

FO(⊥⊥c) ≡ S-NP0
[0,1] < NP0

R

Scope of corollary: formulae of FO(⊥⊥c)

What about sentences of FO(⊥⊥c)?



Existential theory of the reals

I The existential theory of the reals consists of all true sentences of the form

∃x1, . . .∃xnψ(x1, . . . xn)

where ψ is a quantifier-free formula of the real arithmetic

I Gives rise to the Boolean complexity class ∃R:
the closure of the existential theory of the reals under polynomial-time reductions

I NP ≤ ∃R ≤ PSPACE

I Many natural geometric and algebraic problems are complete for ∃R, such as the
art gallery problem or recognition of unit distance graphs



Existential theory of the reals and BSS machines

Theorem ([Bürgisser and Cucker, 2006, Grädel and Meer, 1995,
Schaefer and Stefankovic, 2017])

∃R ≡ BP(NP0
R)≡ ESOR[+,×,≤]

NPR restricted to Boolean inputs and with machine constants 0, 1

Too strong for sentences of FO(⊥⊥c)?



Main result 2 – FO(⊥⊥c) and Boolean computation

Define ∃[0, 1]≤ to be the fragment of ∃R obtained by closing the true sentences of the
existential theory of the reals of the form

∃x1 . . . ∃xn
( ∧

1≤i≤n
0 ≤ xi ∧ xi ≤ 1 ∧ ψ

)
,

where ψ does not contain ¬ nor <, by polynomial-time reductions.

(Cf. L-ESO[0,1][+,× ≤] vs. ESOR[+,× ≤] )

Theorem
Over finite structures, FO(⊥⊥) ≡ ∃[0, 1]≤.

Open question: Does ∃[0, 1]≤ coincide with NP or ∃R?
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Conclusion

I Descriptive complexity of probabilistic independence logic FO(⊥⊥c)
I We characterized FO(⊥⊥c)

I logically using a weakening of ESOR[+,×,≤]
I computationally using a novel S-BSS machine

I Over finite structures FO(⊥⊥) corresponds to a bounded fragment of the
existential theory of the reals, ∃[0, 1]≤

I S-BSS weaker than BSS: captures only unions of closed sets in Rn

I Open questions:
I Is ∃[0, 1]≤ a distinct complexity class between NP and ∃R?
I Are there algebraic/geometric problems that are complete for ∃[0, 1]≤?



Thanks!

(these slides are available at www.virtema.fi/slides/lics2020.pdf)

http://www.virtema.fi/slides/lics2020.pdf
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Grädel, E. and Meer, K. (1995).
Descriptive complexity theory over the real numbers.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June
1995, Las Vegas, Nevada, USA, pages 315–324.
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