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Modal logic

Set ® of atomic propositions. The formulae of ML(®) are generated by:

pu=plopl(ene) | (@Ve)]ldp|Op
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Modal logic
Set ® of atomic propositions. The formulae of ML(®) are generated by:
pu=pl-p[(@Ae)[(eVe)|Op|DOp

Semantics via pointed Kripke structures (W, R, V), w. Nonempty set W, binary
relation R C W?2, valuation V : & — P(W), point w € W.
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Logics

Set ® of atomic propositions. The formulae of ML(®) are generated by:

pu=plopl(ene) | (@Ve)]ldp|Op

Semantics via pointed Kripke structures (W, R, V), w. Nonempty set W, binary
relation R C W?2, valuation V : & — P(W), point w € W.

E.g.,
> K,wkp iff w € V(p),
> K,wE Qp iff K, v |= ¢ for some v s.t. wRv.




Modal logics with team semantics

Set ® of atomic propositions. The formulae of ML(®) are generated by:

pu=plapleAe)|(pVe)|Op|Op.

Semantics via team-pointed Kripke structures (W, R, V), T. Nonempty set W,
binary relation R C W?, valuation V : & — P(W), team T C W.
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Logics

Set ® of atomic propositions. The formulae of ML(®) are generated by:

pu=plapleAe)|(pVe)|Op|Op.

Semantics via team-pointed Kripke structures (W, R, V), T. Nonempty set W,
binary relation R C W?, valuation V : & — P(W), team T C W.

Eg.,
> K, TEp iff T C V(p),
> K, TEQp iff K, T" = ¢ for some T’ such that

Ywe TIve T :wRvandVve T'3w e T : wRv.




Logics of interest

Extensions of modal logic with:
» Propositional dependence atoms: MDL
dep(p1, - - -, Pn, q)
Modal dependence atoms: EMDL
dep(¢1,-- -5 o, )
Inclusion atoms: ML(CQ)
Intuitionistic disjunction: ML(®)
K. TEeQy iff K, TEepor K, TgEY
Universal modality: ML([1l)

v

v

v

v
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Expressive power of modal logics

Theorem (Gabbay, van Benthem)
A class C of pointed Kripke models is definable in ML if and only if C is closed
under k-bisimulation for some k € N.
Theorem (Hella, Stumpf 2015)

A nonempty class C of team-pointed Kripke models is definable in ML(C) if
and only if C is union closed and there exists k € N such that C is closed under
team k-bisimulation.
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Expressive power of modal logics

Theorem (Gabbay, van Benthem)
A class C of pointed Kripke models is definable in ML if and only if C is closed
under k-bisimulation for some k € N.
Theorem (Hella, Stumpf 2015)

A nonempty class C of team-pointed Kripke models is definable in ML(C) if
and only if C is union closed and there exists k € N such that C is closed under
team k-bisimulation.

Theorem (Hella, Luosto, Sano, V. 2014)

A nonempty class C of team-pointed Kripke models is definable in ML(®) if
and only if C is downward closed and there exists k € N such that C is closed
under team k-bisimulation.
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Expressive power of modal logics

Theorem (van Benthem's theorem)

A class C of pointed Kripke models is definable in ML if and only if C is
definable in FO and closed under bisimulation.
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Theorem (van Benthem's theorem)

A class C of pointed Kripke models is definable in ML if and only if C is Expressivity
definable in FO and closed under bisimulation.

Via a recent result of Kontinen, Miiller, Schnoor, and Vollmer on ML(~):

Corollary

A nonempty class C of team-pointed Kripke models is definable in ML(C) if and
only if C is union closed, definable in FO, and closed under team bisimulation.

Corollary

A nonempty class C of team-pointed Kripke models is definable in ML(®) if
and only if C is downward closed, definable in FO, and closed under team
bisimulation.




Expressive power

Extended modal dependence logic EMDL:
K, T = dep(e1,...,on 1) iff Ywg,wy € T:

/\ ({wi} € V(vi) & {w2} € V(i) = ({w1} € V(¥) & {mwa} € V(¥)).
Theorem (Hella, Luosto, Sano, V. 2014)

A class of team-pointed Kripke models is definable in EMDL if and only if it is
definable in ML(@).
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Validity in models and frames

» Pointed model (K, w): (W,R,V),w
> Model (K): (W,R, V)
» Frame (F): (W,R)
We write:
» (W,R,V)E v iff  (W,R,V),w = ¢ holds for every w € W

» (W,R)E v iff (W, R, V) = ¢ holds for every valuation V
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Validity in models and frames

» Pointed model (K, w): (W,R,V),w
> Model (K): (W,R, V)
» Frame (F): (W,R)
We write:
» (W,R,V)E v iff  (W,R,V),w = ¢ holds for every w € W
» (W,R)E v iff (W, R, V) = ¢ holds for every valuation V

Every (set of) ML-formula defines the class of frames in which it is valid.
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Validity in models and frames

» Pointed model (K, w): (W,R,V),w
> Model (K): (W,R, V)
» Frame (F): (W,R)
We write:
» (W,R,V)E v iff  (W,R,V),w = ¢ holds for every w € W
» (W,R)E v iff (W, R, V) = ¢ holds for every valuation V

Every (set of) ML-formula defines the class of frames in which it is valid.

> Fr(p) = {(W,R) | (W,R) = ¢}.
» Fr(lN) ={(W,R) |Vp el :(W,R) = ¢}.
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Frame definability

Definability in
modal logics with
team semantics

Jonni Virtema

Frame definability




Definability

Which properties of graphs can be described with a given logic L.
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Definability

Which properties of graphs can be described with a given logic L.

Example first-order logic on graphs G = (V, E):
» Single formula: IxJy —x = y defines the class {(V,E) | |V| > 2}.

Definability in
modal logics with
team semantics

Jonni Virtema

Frame definability




Definability

Which properties of graphs can be described with a given logic L.

Example first-order logic on graphs G = (V, E):
» Single formula: IxJy —x = y defines the class {(V,E) | |V| > 2}.

> Set of formulae:
{3x1... %, /\ -x; = xj | n € N}
i#j<n

defines the class of infinite graphs.
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Definability

Which properties of graphs can be described with a given logic L.

Example first-order logic on graphs G = (V, E):
» Single formula: IxJy —x = y defines the class {(V,E) | |V| > 2}.

» Set of formulae:
{3x1... %, /\ -x; = xj | n € N}
i#j<n

defines the class of infinite graphs.

A class of structures is called elementary, if there exists a set of FO-formulae
that defines the class.
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Frame definability

Which classes of Kripke frames are definable by a (set of) modal formulae.
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Frame definability

Which classes of Kripke frames are definable by a (set of) modal formulae.

Which elementary classes are definable by a (set of) modal formulae.
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Which classes of Kripke frames are definable by a (set of) modal formulae.

Frame definability

Which elementary classes are definable by a (set of) modal formulae.

Examples:
’ Formula | Property of R ‘
Op—p Reflexive  Vw (wRw)

p— O0p Symmetric  Ywv (wRv — vRw)

Op — OOp | Transitive  Vwvu ((wRv A vRu) — wRu)
Op — OOp | Euclidean  Vwwvu ((wRv A wRu) — vRu)
Op — Op Serial Vw3v (wRv)




Goldblatt-Thomason Theorem (1975)

Set ® of atomic propositions. The formulae of ML(®) are generated by:

pu=ploe|(eVe)|Op.

An elementary frame class is M L-definable iff

> it is closed under taking
» bounded morphic images
> generated subframes
> disjoint unions
> and its complement is closed under taking
> ultrafilter extensions.
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Goldblatt-Thomason Theorem (Goranko, Passy 1992)
The formulae of ML([W) are generated by:

pu=p|op|(eVe) | DOp | We.

KiwkEWp <« YweW:K,vEep.

An elementary frame class is M L(Id)-definable iff
> it is closed under taking
» bounded morphic images

> and its complement is closed under taking
> ultrafilter extensions.
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What do we study?

Frame definability of the fragment ML(W") of ML(W):

pu=plapl(ene)|(eVe) O] Cp | e

Frame definability of particular team based modal logics:
» Modal dependence logic MDL.
» Extended modal dependence logic EMDL.
» Modal logic with intuitionistic disjunction ML(®).
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What do we show?

» We give a variant of the Goldblatt-Thomason theorem for ML(™).

» We show that with respect to frame definability:

ML < MDL = EMDL = ML(©) = ML(@H) < ML(D).
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Frame definability in ML([U")

An elementary frame class is M L-definable iff

> it is closed under taking
» bounded morphic images
» generated subframes
» disjoint unions
> and it reflects
> ultrafilter extensions.
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Frame definability in ML([U")

An elementary frame class is M L-definable iff

> it is closed under taking
» bounded morphic images
» generated subframes
» disjoint unions
> and it reflects
> ultrafilter extensions.

Every M /L-definable class is ML(u™)-definable, but not vice versa.
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Frame definability in ML([U")

An elementary frame class is M L-definable iff

> it is closed under taking
» bounded morphic images
» generated subframes
» disjoint unions
> and it reflects
> ultrafilter extensions.

Every M /L-definable class is ML(u™)-definable, but not vice versa.
ML(@T) is not closed under disjoint unions (e.g., @ p V [l —p).
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Frame definability in ML([U")

An elementary frame class is M L-definable iff

> it is closed under taking

» bounded morphic images
» generated subframes
» disjoint unions

» and it reflects
» ultrafilter extensions.

Every M /L-definable class is ML(u™)-definable, but not vice versa.

ML(@T) is not closed under disjoint unions (e.g., @ p V [l —p).
Therefore ML <p ML(WT).
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Frame definability in ML([U")
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Frame definability in ML([U")

An elementary frame class is M L([4)-definable iff
> it is closed under taking
» bounded morphic images

» and it reflects
» ultrafilter extensions.

Every ML(lW")-definable class is ML([W)-definable, but not vice versa.
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Frame definability in ML([U")

An elementary frame class is M L([4)-definable iff
> it is closed under taking
» bounded morphic images

» and it reflects
» ultrafilter extensions.

Every ML(lW")-definable class is ML([W)-definable, but not vice versa.
ML(@F) is closed under generated subframes (e.g., © O(p vV —p)).
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Frame definability in ML([U")

An elementary frame class is M L([4)-definable iff
> it is closed under taking
» bounded morphic images

» and it reflects
» ultrafilter extensions.

Every ML(lW")-definable class is ML([W)-definable, but not vice versa.
ML(@F) is closed under generated subframes (e.g., © O(p vV —p)).
Therefore ML(™) <p ML([).
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Goldblatt-Thomason Theorem for ML([I")

Theorem (Does this suffice?)

An elementary frame class is ML(W™)-definable iff
> it is closed under taking

» generated subframes
» bounded morphic images

» and it reflects
» ultrafilter extensions.
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Goldblatt-Thomason Theorem for ML([I")

Theorem (Does this suffice?)

An elementary frame class is ML(W™)-definable iff
> it is closed under taking

» generated subframes
» bounded morphic images

» and it reflects
» ultrafilter extensions.

NOI Something more is needed.
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Reflection of Finitely Generated Subframes

A frame class [ reflects finitely generated subframes if:
whenever every finitely generated subframe of § is in [F, then § is also in F.

Theorem
Every ML([W™)-definable frame class F reflects finitely generated subframes.
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Goldblatt-Thomason theorem for M L(LI)

Theorem (Sano and V. 2015)
An elementary frame class F is M L([W™)-definable iff
IF is closed under taking

» bounded morphic images & generated subframes
and it reflects

> ultrafilter extensions & finitely generated subframes.

" By van Benthem (1993)'s model theoretic argument.
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Frame definability in team semantics

Def. K = ¢

iff

VTCW: K, TEy

(iff

K7W|:SO)
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Frame definability in team semantics

Def. K=y iff VTCW: K, TEo
It is easy to show that MDL = EMDL.

(iff

K7W|:SO)
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Def. K= iff YTCW: K TEe (ff K WEep)
It is easy to show that MDL = EMDL.

Let ¢ be the dependence atom dep(#1,...,%,), let k be the modal depth of ¢, FElTOCEE I
and let pi,..., p, be distinct fresh proposition symbols. Define

e = /\ O A (p< ) — dep(pr,...,pn)-

0<i<k  1<j<n




Frame definability in team semantics

Def. K= iff YVTCW: K, TEe (iff K,WIEyp)
It is easy to show that MDL = EMDL.

Let ¢ be the dependence atom dep(#1,...,%,), let k be the modal depth of ¢,
and let pi,..., p, be distinct fresh proposition symbols. Define

e = /\ O A (p< ) — dep(pr,...,pn)-

0<i<k  1<j<n

Next we will show that ML(©) = ML(WT).
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Normal Forms for ML(") and ML(D)

Similar to the normal form for ML([ul) by Goranko and Passy 1992.
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Normal Forms for ML(") and ML(D)

Similar to the normal form for ML([ul) by Goranko and Passy 1992.

With respect to frame definability ML(@™) and \/ @ ML coincide.
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Normal Forms for ML(") and ML(D)

Similar to the normal form for ML([ul) by Goranko and Passy 1992.

With respect to frame definability ML(@™) and \/ @ ML coincide.

Proposition

Every ML(©) formula is equivalent to a formula of the form @iSn ©i, where
each ; is an M/L-formula.
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Normal Forms for ML(") and ML(D)

Similar to the normal form for ML([ul) by Goranko and Passy 1992.

Proposition
With respect to frame definability ML(@™) and \/ @ ML coincide.

Proposition

Every ML(©) formula is equivalent to a formula of the form @iSn ©i, where
each ; is an M/L-formula.

Theorem
With respect to frame definability ML(@) and \/ W ML coincide.
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Results

Theorem (Sano and V. 2015)

An elementary frame class I is £-definable
(L € {ML(Q), MDL,EMDL, ML(WT)}) iff
[F is closed under taking

» bounded morphic images & generated subframes
and it reflects

> ultrafilter extensions & finitely generated subframes.

Theorem (Sano and V. 2015)

With respect to frame definability:
ML < MDL = EMDL = ML(Q) = ML(ET) < ML(W).
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Results Thanks!

Theorem (Sano and V. 2015)

An elementary frame class I is £-definable
(L € {ML(Q), MDL,EMDL, ML(WT)}) iff
[F is closed under taking

» bounded morphic images & generated subframes
and it reflects

> ultrafilter extensions & finitely generated subframes.

Theorem (Sano and V. 2015)

With respect to frame definability:
ML < MDL = EMDL = ML(Q) = ML(ET) < ML(W).
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@ is of the form \/;., W; (v; € ML).

Definability in
modal logics with
team semantics

Jonni Virtema

References




Normal Form for ML([")

Similar to the normal form for ML([ul) by Goranko and Passy 1992.
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Definability in
modal logics with
team semantics

Jonni Virtema

References




Normal Form for ML([")

Similar to the normal form for ML([ul) by Goranko and Passy 1992.

A formula ¢ is a closed disjunctive ul-clause if
@ is of the form \/;., W; (v; € ML).

A formula ¢ is in conjunctive [l-form if
@ is of the form /\jeJ 1;, where each 1); is a closed disjunctive [u-clause.

Theorem

Each formula of ML(W™) is equivalent to a formula in conjunctive [@-form.
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Similar to the normal form for ML([ul) by Goranko and Passy 1992.

A formula ¢ is a closed disjunctive ul-clause if
@ is of the form \/;., W; (v; € ML).

A formula ¢ is in conjunctive [l-form if
@ is of the form /\jeJ 1;, where each 1); is a closed disjunctive [u-clause.

Each formula of ML([W") is equivalent to a formula in conjunctive [@-form.

Corollary

With respect to frame definability ML(@™) and \/ @ ML coincide.
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Normal Form for ML(®)

Every formula is equivalent to a formula of the form

@‘7‘9/7

i<n

where each ¢; is an M L-formula.

Definability in
modal logics with
team semantics

Jonni Virtema

References




Normal Form for ML(®)

Every formula is equivalent to a formula of the form

@90/7

i<n

where each ¢; is an M L-formula.

With respect to frame definability ML(@) and \/ W ML coincide.
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Normal Form for ML(®)

Every formula is equivalent to a formula of the form

@90/7

i<n

where each ¢; is an M L-formula.

With respect to frame definability ML(@) and \/ W ML coincide.

(Already in the level of validity in a model.)
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Bounded morphism and Ultrafilter Extension modal logics with
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|
f:(W,R)— (W', R') is a bounded morphism if:

» (Forth) wRv implies f(w)R'f(v)

» (Back) f(w)R'b implies: f(v) = b and wRv for some v

|
(Uf(W), R*¢) is the ultrafilter extension of (W, R) where:

» Uf(W) is the set of all ultrafilters &/ C P(W).
> URMU' iff Y € U’ implies R7I[Y] €U forall Y C W.
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