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Modal logic

Set Φ of atomic propositions. The formulae of ML(Φ) are generated by:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ

Semantics via pointed Kripke structures (W ,R,V ),w . Nonempty set W , binary
relation R ⊆W 2, valuation V : Φ→ P(W ), point w ∈W .

E.g.,

I K ,w |= p iff w ∈ V (p),

I K ,w |= ♦ϕ iff K , v |= ϕ for some v s.t. wRv .
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Modal logics with team semantics

Set Φ of atomic propositions. The formulae of ML(Φ) are generated by:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ.

Semantics via team-pointed Kripke structures (W ,R,V ),T . Nonempty set W ,
binary relation R ⊆W 2, valuation V : Φ→ P(W ), team T ⊆W .

E.g.,

I K ,T |= p iff T ⊆ V (p),

I K ,T |= ♦ϕ iff K ,T ′ |= ϕ for some T ′ such that
∀w ∈ T ∃v ∈ T ′ : wRv and ∀v ∈ T ′ ∃w ∈ T : wRv .
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Logics of interest

Extensions of modal logic with:

I Propositional dependence atoms: MDL
dep(p1, . . . , pn, q)

I Modal dependence atoms: EMDL
dep(ϕ1, . . . , ϕn, ψ)

I Inclusion atoms: ML(⊆)

I Intuitionistic disjunction: ML(>)
K ,T |= ϕ>ψ iff K ,T |= ϕ or K ,T |= ψ

I Universal modality: ML(�u )
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Expressive power of modal logics

Theorem (Gabbay, van Benthem)

A class C of pointed Kripke models is definable in ML if and only if C is closed
under k-bisimulation for some k ∈ N.

Theorem (Hella, Stumpf 2015)

A nonempty class C of team-pointed Kripke models is definable in ML(⊆) if
and only if C is union closed and there exists k ∈ N such that C is closed under
team k-bisimulation.

Theorem (Hella, Luosto, Sano, V. 2014)

A nonempty class C of team-pointed Kripke models is definable in ML(6) if
and only if C is downward closed and there exists k ∈ N such that C is closed
under team k-bisimulation.
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Expressive power of modal logics

Theorem (van Benthem’s theorem)

A class C of pointed Kripke models is definable in ML if and only if C is
definable in FO and closed under bisimulation.

Via a recent result of Kontinen, Müller, Schnoor, and Vollmer on ML(∼):

Corollary

A nonempty class C of team-pointed Kripke models is definable inML(⊆) if and
only if C is union closed, definable in FO, and closed under team bisimulation.

Corollary

A nonempty class C of team-pointed Kripke models is definable in ML(6) if
and only if C is downward closed, definable in FO, and closed under team
bisimulation.



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

7/ 25

Expressive power of modal logics

Theorem (van Benthem’s theorem)

A class C of pointed Kripke models is definable in ML if and only if C is
definable in FO and closed under bisimulation.

Via a recent result of Kontinen, Müller, Schnoor, and Vollmer on ML(∼):

Corollary

A nonempty class C of team-pointed Kripke models is definable inML(⊆) if and
only if C is union closed, definable in FO, and closed under team bisimulation.

Corollary

A nonempty class C of team-pointed Kripke models is definable in ML(6) if
and only if C is downward closed, definable in FO, and closed under team
bisimulation.



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

8/ 25

Expressive power

Extended modal dependence logic EMDL:

K ,T |= dep(ϕ1, . . . , ϕn, ψ) iff ∀w1,w2 ∈ T :∧
i≤n

(
{w1} ∈ V (ϕi )⇔ {w2} ∈ V (ϕi )

)
⇒
(
{w1} ∈ V (ψ)⇔ {w2} ∈ V (ψ)

)
.

Theorem (Hella, Luosto, Sano, V. 2014)

A class of team-pointed Kripke models is definable in EMDL if and only if it is
definable in ML(6).
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Validity in models and frames

I Pointed model (K ,w): (W ,R,V ),w

I Model (K ): (W ,R,V )

I Frame (F ): (W ,R)

We write:

I (W ,R,V ) |= ϕ iff (W ,R,V ),w |= ϕ holds for every w ∈W

I (W ,R) |= ϕ iff (W ,R,V ) |= ϕ holds for every valuation V

Every (set of) ML-formula defines the class of frames in which it is valid.

I Fr(ϕ) := {(W ,R) | (W ,R) |= ϕ}.
I Fr(Γ) := {(W ,R) | ∀ϕ ∈ Γ : (W ,R) |= ϕ}.
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Frame definability
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Definability

Which properties of graphs can be described with a given logic L.

Example first-order logic on graphs G = (V ,E ):

I Single formula: ∃x∃y ¬x = y defines the class {(V ,E ) | |V | ≥ 2}.
I Set of formulae:

{∃x1 . . . xn
∧

i 6=j≤n
¬xi = xj | n ∈ N}

defines the class of infinite graphs.

A class of structures is called elementary, if there exists a set of FO-formulae
that defines the class.
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Frame definability

Which classes of Kripke frames are definable by a (set of) modal formulae.

Which elementary classes are definable by a (set of) modal formulae.

Examples:

Formula Property of R

�p → p Reflexive ∀w (wRw)

p → �♦p Symmetric ∀wv (wRv → vRw)

�p → ��p Transitive ∀wvu ((wRv ∧ vRu)→ wRu)

♦p → �♦p Euclidean ∀wvu ((wRv ∧ wRu)→ vRu)

�p → ♦p Serial ∀w∃v (wRv)
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Goldblatt-Thomason Theorem (1975)

Set Φ of atomic propositions. The formulae of ML(Φ) are generated by:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | �ϕ.

Theorem

An elementary frame class is ML-definable iff
I it is closed under taking

I bounded morphic images
I generated subframes
I disjoint unions

I and its complement is closed under taking
I ultrafilter extensions.
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Goldblatt-Thomason Theorem (Goranko, Passy 1992)

The formulae of ML(�u ) are generated by:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | �ϕ | �u ϕ.

K ,w |= �u ϕ ↔ ∀v ∈W : K , v |= ϕ.

Theorem

An elementary frame class is ML(�u )-definable iff
I it is closed under taking

I bounded morphic images

I and its complement is closed under taking
I ultrafilter extensions.
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What do we study?

Frame definability of the fragment ML(�u +) of ML(�u ):

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | �ϕ | ♦ϕ | �u ϕ.

Frame definability of particular team based modal logics:

I Modal dependence logic MDL.

I Extended modal dependence logic EMDL.

I Modal logic with intuitionistic disjunction ML(>).
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What do we show?

I We give a variant of the Goldblatt-Thomason theorem for ML(�u +).

I We show that with respect to frame definability:

ML <MDL = EMDL =ML(>) =ML(�u +) <ML(�u ).
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Frame definability in ML(�u +)

Theorem

An elementary frame class is ML-definable iff
I it is closed under taking

I bounded morphic images
I generated subframes
I disjoint unions

I and it reflects
I ultrafilter extensions.

Every ML-definable class is ML(�u +)-definable, but not vice versa.

ML(�u +) is not closed under disjoint unions (e.g., �u p ∨�u ¬p).

Therefore ML <F ML(�u +).
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Frame definability in ML(�u +)

Theorem

An elementary frame class is ML(�u )-definable iff
I it is closed under taking

I bounded morphic images

I and it reflects
I ultrafilter extensions.

Every ML(�u +)-definable class is ML(�u )-definable, but not vice versa.

ML(�u +) is closed under generated subframes (e.g., ♦u ♦(p ∨ ¬p)).

Therefore ML(�u +) <F ML(�u ).



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

18/ 25

Frame definability in ML(�u +)

Theorem

An elementary frame class is ML(�u )-definable iff
I it is closed under taking

I bounded morphic images

I and it reflects
I ultrafilter extensions.

Every ML(�u +)-definable class is ML(�u )-definable, but not vice versa.

ML(�u +) is closed under generated subframes (e.g., ♦u ♦(p ∨ ¬p)).

Therefore ML(�u +) <F ML(�u ).



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

18/ 25

Frame definability in ML(�u +)

Theorem

An elementary frame class is ML(�u )-definable iff
I it is closed under taking

I bounded morphic images

I and it reflects
I ultrafilter extensions.

Every ML(�u +)-definable class is ML(�u )-definable, but not vice versa.

ML(�u +) is closed under generated subframes (e.g., ♦u ♦(p ∨ ¬p)).

Therefore ML(�u +) <F ML(�u ).



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

18/ 25

Frame definability in ML(�u +)

Theorem

An elementary frame class is ML(�u )-definable iff
I it is closed under taking

I bounded morphic images

I and it reflects
I ultrafilter extensions.

Every ML(�u +)-definable class is ML(�u )-definable, but not vice versa.

ML(�u +) is closed under generated subframes (e.g., ♦u ♦(p ∨ ¬p)).

Therefore ML(�u +) <F ML(�u ).



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

19/ 25

Goldblatt-Thomason Theorem for ML(�u +)

Theorem (Does this suffice?)

An elementary frame class is ML(�u +)-definable iff
I it is closed under taking

I generated subframes
I bounded morphic images

I and it reflects
I ultrafilter extensions.

NO! Something more is needed.
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Reflection of Finitely Generated Subframes

A frame class F reflects finitely generated subframes if:
whenever every finitely generated subframe of F is in F, then F is also in F.

Theorem

Every ML(�u +)-definable frame class F reflects finitely generated subframes.
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Goldblatt-Thomason theorem for ML(�u +)

Theorem (Sano and V. 2015)

An elementary frame class F is ML(�u +)-definable iff
F is closed under taking

I bounded morphic images & generated subframes

and it reflects

I ultrafilter extensions & finitely generated subframes.

∵ By van Benthem (1993)’s model theoretic argument.
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Frame definability in team semantics

Def. K |= ϕ iff ∀T ⊆W : K ,T |= ϕ (iff K ,W |= ϕ)

It is easy to show that MDL =F EMDL.

Proof

Let ϕ be the dependence atom dep(ψ1, . . . , ψn), let k be the modal depth of ϕ,
and let p1, . . . , pn be distinct fresh proposition symbols. Define

ϕ∗ :=
( ∧

0≤i≤k
�i

∧
1≤j≤n

(pj ↔ ψj)
)
→ dep(p1, . . . , pn) .

Next we will show that ML(>) =F ML(�u +).
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Normal Forms for ML(�u +) and ML(>)

Similar to the normal form for ML(�u ) by Goranko and Passy 1992.

Proposition

With respect to frame definability ML(�u +) and
∨
�u ML coincide.

Proposition

Every ML(>) formula is equivalent to a formula of the form 6i≤n ϕi , where
each ϕi is an ML-formula.

Theorem

With respect to frame definability ML(>) and
∨
�u ML coincide.



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

23/ 25

Normal Forms for ML(�u +) and ML(>)

Similar to the normal form for ML(�u ) by Goranko and Passy 1992.

Proposition

With respect to frame definability ML(�u +) and
∨
�u ML coincide.

Proposition

Every ML(>) formula is equivalent to a formula of the form 6i≤n ϕi , where
each ϕi is an ML-formula.

Theorem

With respect to frame definability ML(>) and
∨
�u ML coincide.



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

23/ 25

Normal Forms for ML(�u +) and ML(>)

Similar to the normal form for ML(�u ) by Goranko and Passy 1992.

Proposition

With respect to frame definability ML(�u +) and
∨
�u ML coincide.

Proposition

Every ML(>) formula is equivalent to a formula of the form 6i≤n ϕi , where
each ϕi is an ML-formula.

Theorem

With respect to frame definability ML(>) and
∨
�u ML coincide.



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

23/ 25

Normal Forms for ML(�u +) and ML(>)

Similar to the normal form for ML(�u ) by Goranko and Passy 1992.

Proposition

With respect to frame definability ML(�u +) and
∨
�u ML coincide.

Proposition

Every ML(>) formula is equivalent to a formula of the form 6i≤n ϕi , where
each ϕi is an ML-formula.

Theorem

With respect to frame definability ML(>) and
∨
�u ML coincide.



Definability in
modal logics with
team semantics

Jonni Virtema

Logics

Expressivity

Frame definability

What do we study?

GbTh theorem

Frame definability
in team semantics

Conclusion

References

24/ 25

Results

Thanks!

Theorem (Sano and V. 2015)

An elementary frame class F is L-definable
(L ∈ {ML(>),MDL, EMDL,ML(�u +)}) iff
F is closed under taking

I bounded morphic images & generated subframes

and it reflects

I ultrafilter extensions & finitely generated subframes.

Theorem (Sano and V. 2015)

With respect to frame definability:
ML <MDL = EMDL =ML(>) =ML(�u +) <ML(�u ).
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Normal Form for ML(�u +)

Similar to the normal form for ML(�u ) by Goranko and Passy 1992.

A formula ϕ is a closed disjunctive �u -clause if
ϕ is of the form

∨
i∈I �u ψi (ψi ∈ML).

A formula ϕ is in conjunctive �u -form if
ϕ is of the form

∧
j∈J ψj , where each ψj is a closed disjunctive �u -clause.

Theorem

Each formula of ML(�u +) is equivalent to a formula in conjunctive �u -form.

Corollary

With respect to frame definability ML(�u +) and
∨
�u ML coincide.
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Normal Form for ML(>)

Every formula is equivalent to a formula of the form

6
i≤n

ϕi ,

where each ϕi is an ML-formula.

Theorem

With respect to frame definability ML(>) and
∨
�u ML coincide.

(Already in the level of validity in a model.)
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Bounded morphism and Ultrafilter Extension

f : (W ,R)→ (W ′,R ′) is a bounded morphism if:

I (Forth) wRv implies f (w)R ′f (v)

I (Back) f (w)R ′b implies: f (v) = b and wRv for some v

(Uf(W ),Rue) is the ultrafilter extension of (W ,R) where:

I Uf(W ) is the set of all ultrafilters U ⊆ P(W ).

I URueU ′ iff Y ∈ U ′ implies R−1[Y ] ∈ U for all Y ⊆W .


	Logics
	Expressivity
	Frame definability
	What do we study?
	GbTh theorem
	Frame definability in team semantics
	Conclusion
	References

