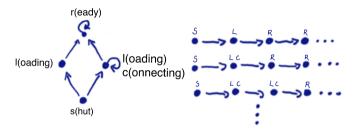
Temporal Team Semantics Revisited


Jonni Virtema University of Sheffield, UK

Joint work with Jens Oliver Gutsfeld, Arne Meier, and Christoph Ohrem.

Highlights of Logic, Automata, and Games 2022 1 July 2022

Traceproperties and hyperproperties

Opening your office computer after holidays:

Traceproperties hold in a system if each trace (in isolation) has the property:

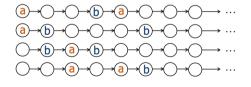
The computer will be eventually ready.

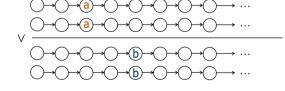
Hyperproperties are properties of sets of traces (in security, information flow, etc.):

- The computer will be ready in bounded time.
- Public outputs do not leak information about secret outputs.

Two paradigms: HyperLTL vs. TeamLTL

A trace-set T satisfies $\varphi \lor \psi$ if it decomposes to sets T_{φ} and T_{ψ} satisfying φ and ψ .


$$(T,i)\models arphiee\psi$$
 iff $(T_1,i)\modelsarphi$ and $(T_2,i)\models\psi$, for some $T_1\cup T_2=T$


HyperLTL:

 $\forall \pi. \forall \pi'. F((a_{\pi} \land a_{\pi'}) \lor (b_{\pi} \land b_{\pi'}))$

TeamLTL:

 $(F a) \lor (F b)$

LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid X\varphi \mid \varphi U\varphi$$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi\models_{\mathcal{T}}\varphi$

$$\begin{split} \varphi &::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi \\ \psi &::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi \end{split}$$

In TeamLTL the satisfying object is a set of traces. We use team semantics: $(T, i) \models \varphi$

$$\varphi ::= p \mid \neg p \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid X\varphi \mid \varphi U \mid \varphi W\varphi$$

+ new atomic statements (dependence and inclusion atoms: dep(\vec{p}, q), $\vec{p} \subseteq \vec{q}$) + additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity

TeamLTL with asynchronous behaviour

- Synchronous TeamLTL (Krebs, Meier, V., and Zimmermann, MFCS 2018):
 - Collection of traces T with one global clock i.
 - ▶ $(T,i) \models \mathsf{F} \varphi$ iff $(T,i+k) \models \varphi$, for some $k \in \mathbb{N}$
- Asynchronous TeamLTL (Krebs, Meier, V., and Zimmermann, MFCS 2018):
 - Collection of traces T with a collection of local clocks $f: T \to \mathbb{N}$.
 - Local clocks are completely independent.
 - ▶ $(T, f) \models F\varphi$ iff $(T, g) \models \varphi$, for some g s.t. $g(t) \ge f(t)$, for each $t \in T$.

TeamLTL with asynchronous behaviour

- Synchronous TeamLTL (Krebs, Meier, V., and Zimmermann, MFCS 2018):
 - Collection of traces T with one global clock i.
 - ▶ $(T,i) \models F \varphi$ iff $(T,i+k) \models \varphi$, for some $k \in \mathbb{N}$
- Asynchronous TeamLTL (Krebs, Meier, V., and Zimmermann, MFCS 2018):
 - Collection of traces T with a collection of local clocks $f: T \to \mathbb{N}$.
 - Local clocks are completely independent.
 - ▶ $(T, f) \models F\varphi$ iff $(T, g) \models \varphi$, for some g s.t. $g(t) \ge f(t)$, for each $t \in T$.
- TeamLTL with time evaluation functions (tefs) (Gutsfeld, Meier, Ohrem, and V., LICS 2022):
 - Collection of traces T and a tef $\tau : \mathbb{N} \times T \to \mathbb{N}$ relating a global clock to local clocks.
 - The behaviour of local clocks is determined by a tef.
 - ► $(T, \tau) \models \mathsf{F}\varphi$ iff $(T, \tau[k, \infty]) \models \varphi$, for some $k \in \mathbb{N}$.
 - Synchronous TeamLTL is an instance, where the tef is synchronous!
 - (cf. trajectories of Bonakdarpour, Prabhakar, Sánchez, NASA Formal Methods 2020)

Properties of tefs

Property	Definition
Monotonicity	$orall i \in \mathbb{N}: au(i) \leq au(i+1)$
Strict Monotonicity	$orall i \in \mathbb{N}: au(i) < au(i+1)$
Stepwiseness	$orall i \in \mathbb{N}: au(i) \leq au(i+1) \leq au(i) + ec{1}$
*Fairness	$orall i \in \mathbb{N} orall t \in \mathcal{T} \exists j \in \mathbb{N} : au(j,t) \geq i$
*Non-Parallelism	$orall i \in \mathbb{N}: i = \sum_{t \in T} au(i,t)$
*Synchronicity	$orall i, i' \in \mathbb{N} orall t \in \mathcal{T}: au(i,t) = au(i,t')$

Table: * are optional. $\tau(i)$ is the tuple $(\tau(i, t))_{t \in T}$ of values of local clocks at time *i*.

- stuttering tef satisfies monotonicity
- tef satisfies strict monotonicity and stepwiseness

synchronous tef satisfies strict monotonicity, stepwiseness, and synchronicity

Team semantics with tefs

Let (T, τ) be a pair, where T is a multiset of traces and τ is a stuttering tef for T.

$$\begin{array}{ll} (T,\tau) \models \mathsf{X}\varphi & \text{iff} & (T,\tau[1,\infty]) \models \varphi \\ (T,\tau) \models [\varphi \mathsf{U}\psi] & \text{iff} & \exists k \in \mathbb{N} \text{ such that } (T,\tau[k,\infty]) \models \psi \text{ and} \\ & \forall m : \mathsf{0} \le m < k \Rightarrow (T,\tau[m,\infty]) \models \varphi \end{array}$$

11

k-shifted tef if defined by $\tau[k,\infty](i,t) \coloneqq \tau(i+k,t)$, for all $t \in T$, $i \in \mathbb{N}$.

Variants and extensions of TeamLTL

∃TeamLTL

• $T \models_{\exists} \varphi$ if $(T, \tau) \models \varphi$ for some initial tef of T.

∀TeamLTL

• $T \models_{\forall} \varphi$ if $(T, \tau) \models \varphi$ for all initial tefs of T.

Synchronous TeamLTL

• $T \models_s \varphi$ if $(T, \tau) \models \varphi$ for the unique initial synchronous tef of T.

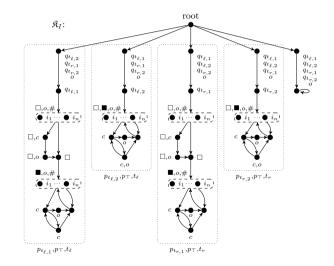
 $\mathrm{Team}\mathrm{CTL}^*$ has the same syntax as $\mathsf{CTL}^*:$

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\varphi \mid \varphi \mathsf{W}\varphi \mid \exists \varphi \mid \forall \varphi$$

The quantifiers \exists and \forall range over tefs:

$$(T, \tau) \models \exists \varphi \text{ iff } (T, \tau') \models \varphi \text{ for some tef } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0),$$

 $(T, \tau) \models \forall \varphi \text{ iff } (T, \tau') \models \varphi \text{ for all tefs } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0).$


8/11

Complexity results: When are the logics decidable?

Model Checking Problem for	Complexity	
$\exists \text{TeamLTL}(\emptyset, \text{NE})$	Σ_1^0 -hard	
∃TeamCTL*(∅)	$\Sigma_1^{\overline{1}}$ -hard	
$TeamCTL^*(S, ALL)$ for <i>k</i> -synchronous or <i>k</i> -	decidable	
context-bounded tefs, when the team is finite		
Fixed formula, k , and team size	polynomial time	

Table: ALL is the set of all "generalised atoms" and $S = \{ \emptyset, NE, \dot{A}, dep, \subseteq \}$. Decidability via a translation to Alternating Asynchronous Büchi Automata, (Gutsfeld, Müller-Olm, and Ohrem, POPL 2021).

Gadgets for recurrent 2-counter machines

10/11

Advertisements

- Workshop 30 years of finite model theory in Finland, Helsinki, Finland.
 - Date: August 21-23 2022
 - Registration for giving a talk and to participate: July 6th 2022
 - Website: https://www.helsinki.fi/en/conferences/ 30-years-of-finite-model-theory-in-finland
 - Contact: fmt-30@helsinki.fi
- ▶ 2 x PostDoc positions in Computer Science Logic, University of Sheffield, UK
 - ► Topic: Logics and complexity theory utilising numerical features and real valued data
 - Duration: until 31.10.2023 (2 × 15m, might be possible to join to one longer post)
 - Deadline: July 20th 2022.
- ▶ PhD position in Temporal Logic, University of Sheffield, UK
 - Fully funded for 3.5 years for students applicable for UK Home rates (Brexit)
 - International applicants: Graduate teaching assistant, etc. possibilities in near future.
- Details: www.virtema.fi
- Contact: j.t.virtema@sheffield.ac.uk