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Transitive closure

The transitive closure TC(R) of a binary relation R ⊆ A×A is defined as follows

TC(R) :={(a, b) ∈ A× A | ∃n > 0 and e0, . . . , en ∈ A

such that a = e0, b = en, and (ei , ei+1) ∈ R for all i < n}.

In our setting A is set of tuples (a1, . . . an), where each ai is either an element or
a relation over some domain D.
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Transitive closure

Example

Let G = (V ,E ) be an undirected graph. Then (a, b) ∈ TC(E ) if a and b are in
the same component of G , or equivalently, if there is a path from a to b in G .

Example

A graph G = (V ,E ) has a Hamiltonian cycle if the following holds:

1. There is a relation R such that

(Z , z ,Z ′, z ′) ∈ R iff Z ′ = Z ∪ {z ′}, z ′ /∈ Z and (z , z ′) ∈ E .

2. The tuple ({x}, x ,V , y) is in the transitive closure of R, for some x , y ∈ V
such that (y , x) ∈ E .
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Logics with transitive closure operator

First-order transitive closure logic FO(TC):

ϕ ::= x = y | X (x1, . . . , xk) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | [TC
~x ,~x ′

ϕ](~y , ~y ′),

where ~x , ~x ′,~y , and ~y ′ are tuples of first-order variables of the same length.

Semantics for the TC operator:

A |=s [TC
~x ,~x ′

ϕ](~y , ~y ′) iff
(
s(~y), s(~y ′)

)
∈ TC({(~a, ~a′) | A |=

s(~x 7→~a,~x ′ 7→~a′)
ϕ})

Example

The sentence
∀x∀y [TCz,z ′E (z , z ′)](x , y)

expresses connectivity of graphs (V ,E ).
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Logics with transitive closure operator

Second-order transitive closure logic SO(TC):

ϕ ::= x = y | X (x1, . . . , xk) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Yϕ | [TC~X , ~X ′
ϕ]( ~Y , ~Y ′),

where ~X , ~X ′, ~Y , and ~Y ′ are tuples of first-order and second-order variables of the
same length and sort.

Semantics for the TC operator:

A |=s [TC~X , ~X ′
ϕ]( ~Y , ~Y ′) iff

(
s( ~Y ), s( ~Y ′)

)
∈ TC({(~A, ~B ′) | A |=

s(~X 7→~A, ~X ′ 7→ ~A′)
ϕ})

MSO(TC) is the fragment of SO(TC) in which all second-order variables have
arity 1.
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The Härtig quantifier

A |=s Hxy(ϕ(x), ψ(y))⇔ the sets {a ∈ A | A |=s(x 7→a) ϕ(x)} and

{b ∈ A | A |=s(y 7→b) ψ(y)} have the same cardinality

Example (The Härtig quantifier can be expressed in MSO(TC).)

Let ψdecrement denote an FO-formula expressing that s(X ′) = s(X ) \ {a} and
s(Y ′) = s(Y ) \ {b} for some a and b. Define

ψec := ∃X∅
((
∀x¬X∅(x)

)
∧ [TCX ,Y ,X ′,Y ′ψdecrement](Z ,Z

′,X∅,X∅)
)
.

Now ψec holds under s if and only if the cardinalities of s(Z ) and s(Z ′) are the
same. Therefore Hxy(ϕ(x), ψ(y)) is equivalent with the formula

∃Z∃Z ′
(
∀x(ϕ(x)↔ Z (x)) ∧ ∀y(ψ(y)↔ Z ′(y)) ∧ ψec

)
.
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Example (The Härtig quantifier can be expressed in MSO(TC).)

Let ψdecrement denote an FO-formula expressing that s(X ′) = s(X ) \ {a} and
s(Y ′) = s(Y ) \ {b} for some a and b. Define

ψec := ∃X∅
((
∀x¬X∅(x)

)
∧ [TCX ,Y ,X ′,Y ′ψdecrement](Z ,Z

′,X∅,X∅)
)
.

Now ψec holds under s if and only if the cardinalities of s(Z ) and s(Z ′) are the
same. Therefore Hxy(ϕ(x), ψ(y)) is equivalent with the formula

∃Z∃Z ′
(
∀x(ϕ(x)↔ Z (x)) ∧ ∀y(ψ(y)↔ Z ′(y)) ∧ ψec

)
.



Expressivity within
second-order

transitive-closure
logic

Jonni Virtema

Transitive closure

FO(TC) & SO(TC)

Examples

Expressivity

MSO(TC) and
counting

Order invariant
MSO

Open questions

6/ 22
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Hamiltonian cycle

Example

A graph G = (V ,E ) has a Hamiltonian cycle if the following holds:

1. There is a relation R such that

(Z , z ,Z ′, z ′) ∈ R iff Z ′ = Z ∪ {z ′}, z ′ /∈ Z and (z , z ′) ∈ E .

2. The tuple ({x}, x ,V , y) is in the transitive closure of R, for some x , y ∈ V
such that (y , x) ∈ E .

In the language of MSO(TC) this can be written as follows:

∃XYxy
(
X (x)∧∀z(z 6= x → ¬X (x))∧∀z(Y (z))∧E (y , x)∧[TCZ ,z,Z ′,z ′ϕ](X , x ,Y , y)

)
where ϕ := ¬Z (z ′) ∧ ∀x

(
Z ′(x)↔ (Z (x) ∨ z ′ = x)

)
∧ E (z , z ′).
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Descriptive complexity

Theorem (Harel and Peleg 84)

SO(TC) captures polynomial space PSPACE.

Theorem (Immerman 87)

I On finite ordered structures, first-order transitive-closure logic FO(TC)
captures nondeterministic logarithmic space NLOGSPACE.

I On strings (word structures), SO(arity k)(TC) captures the complexity
class NSPACE(nk).

In particular, on strings MSO(TC) captures nondeterministic linear space NLIN.
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Existential positive SO(2TC)

∃SO(2TC) is the syntactic fragment of SO(TC) in which

1. the existential quantifiers and the TC-operators occur only positively.

2. TC-operators bound only second-order variables.

Rosen noted (99) that ∃SO collapses to existential first-order logic ∃FO.

Theorem

The expressive powers of ∃SO(2TC) and ∃FO coincide.

Proof.

[TC~X , ~X ′
∃x1 . . . ∃xnθ]( ~Y , ~Y ′) and A |= [TCk

~X , ~X ′
∃x1 . . . ∃xnθ]( ~Y , ~Y ′),

where θ is quantifier free FO-formula, are equivalent for large enough k .
(Note that k independent of the model in question and depends only on the
formula.)
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Corridor tiling problem

The corridor tiling problem is the following PSPACE-complete decision problem
(Chlebus 86):
Input: An instance P = (T ,H,V , ~b, ~t, n) of the corridor tiling problem.
Output: Does there exist a corridor tiling for P? (Does there exists a tiling of
width n having ~b as the first row and ~t as the last row?)
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Complexity of model checking

Theorem

Combined complexity of model checking for monadic 2TC[∀FO] is
PSPACE-complete.

Proof.

Hardness follows from a reduction from corridor tiling. Input: (T ,H,V , ~b, ~t).
Let s be a successor relation on {0, 1, . . . , n} and X1, . . .Xk ,Y1, . . . ,Yk monadic
second-order variables that correspond to tile types.

ϕH := ∀xy
(
s(x , y)→

∨
(i ,j)∈H

Z ′i (x) ∧ Z ′j (y)
)
, ϕV := ∀x

∨
(i ,j)∈V

Zi (x) ∧ Z ′j (x)

ϕT := ∀x
∨
i∈T

(
Z ′i (x) ∧

∧
j∈T ,i 6=j

¬Z ′j (x)
)
,

The formula TC~Z , ~Z ′
[ϕT ∧ ϕH ∧ ϕV ](~X , ~Y ) describes proper tiling.
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MSO(TC) and counting

I Assume a supply of counter variables µ and ν (with subscripts). Counters
range over {0, . . . , n}, where n is the cardinality the model.

I Assume a supply of k-ary numeric predicates p(µ1, . . . , µk).
I Intuitively relations over natural numbers such as the tables of multiplication

and addition.
I Technically similar to generalised quantifiers; a k-ary numeric predicate is a

class Qp ⊆ Nk+1 of k + 1-tuples of natural numbers.
I When evaluating a k-ary numeric predicate p(µ1, . . . , µk), the numeric

predicate Qp accesses also the cardinality of the structure in question.
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MSO(TC) and counting

Definition

The syntax of CMSO(TC) extends the syntax of MSO(TC) as follows:

ϕ ::= (µ = #{x : ϕ}) | p(µ1, . . . , µk) | ∃µϕ | [TC~X , ~X ′
ϕ]( ~Y , ~Y ′),

where ~X , ~X ′, ~Y , and ~Y ′ may also include counter variables.

Semantics:

A |=s µ = #{x : ϕ} iff s(µ) equals the cardinality of {a ∈ A | A |=s(x 7→a) ϕ}.
A |=s p(µ1, . . . , µk) iff

(
|A|, s(µ1), . . . , s(µk)

)
∈ Qp

A |=s ∃µϕ iff there exists i ∈ {0, . . . , n} such that A |=s(µ7→i) ϕ.



Expressivity within
second-order

transitive-closure
logic

Jonni Virtema

Transitive closure

FO(TC) & SO(TC)

Examples

Expressivity

MSO(TC) and
counting

Order invariant
MSO

Open questions

13/ 22

MSO(TC) and counting

Definition

The syntax of CMSO(TC) extends the syntax of MSO(TC) as follows:

ϕ ::= (µ = #{x : ϕ}) | p(µ1, . . . , µk) | ∃µϕ | [TC~X , ~X ′
ϕ]( ~Y , ~Y ′),

where ~X , ~X ′, ~Y , and ~Y ′ may also include counter variables.

Semantics:

A |=s µ = #{x : ϕ} iff s(µ) equals the cardinality of {a ∈ A | A |=s(x 7→a) ϕ}.
A |=s p(µ1, . . . , µk) iff

(
|A|, s(µ1), . . . , s(µk)

)
∈ Qp

A |=s ∃µϕ iff there exists i ∈ {0, . . . , n} such that A |=s(µ7→i) ϕ.



Expressivity within
second-order

transitive-closure
logic

Jonni Virtema

Transitive closure

FO(TC) & SO(TC)

Examples

Expressivity

MSO(TC) and
counting

Order invariant
MSO

Open questions

14/ 22

Counting in NLOGSPACE

Definition

A k-ary numeric predicate Qp is decidable in NLOGSPACE if the membership
(n0, . . . , nk) ∈ Qp can be decided by a nondeterministic Turing machine that
uses logarithmic space when the numbers n0, . . . , nk are given in unary. Note
that this is equivalent to linear space when n0, . . . , nk are given in binary.

We restrict to numeric predicates that are decidable in NLOGSPACE.

Example

Let k be a natural number, X ,Y ,Z ,X1, . . . ,Xn monadic second-order variables.
The following numeric predicates are clearly NLOGSPACE-definable:

I A |=s size(X , k) iff |s(X )| = k,

I A |=s ×(X ,Y ,Z ) iff |s(X )| × |s(Y )| = |s(Z )|,
I A |=s +(X1, . . . ,Xn,Y ) iff |s(X1)|+ · · ·+ |s(Xn)| = |s(Y )|.
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Counting in NLOGSPACE

Proposition (Immerman 87)

For every k-ary numeric predicate Qp decidable in NLOGSPACE there exists a
formula ϕp of FO(TC) over {s, x1, . . . , xk},

A |=s p(µ1, . . . , µk) iff B |=t ϕp,

where B = {0, 1, . . . , |A|}, t(s) is the successor relation of B, and t(xi ) = s(µi ),
for 1 ≤ i ≤ k.
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MSO(TC) (without order) simulates FO(TC) with order

The idea is that natural numbers i are simulated by sets of cardinality i . Recall
that MSO(TC) can express the Härtig quantifier!

The translation + : FO(TC)→ MSO(TC) is defined as follows:

I For ψ of the form xi = xj , define ψ+ := Hxy
(
Xi (x),Xj(y)

)
.

I For ψ of the form s(xi , xj), define

ψ+ := ∃z
(
¬Xi (z) ∧Hxy

(
Xi (x) ∨ x = z ,Xj(y)

))
.

I For ψ of the form ∃xiϕ, define ψ+ := ∃Xiϕ
+.

I For ψ of the form [TC
~x ,~x ′

ϕ](~y , ~y ′), define ψ+ := [TC~X , ~X ′
ϕ+]( ~Y , ~Y ′).
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MSO(TC) simulates CMSO(TC)

In MSO(TC) counter variables are treated as set variables. Define a translation
∗ : CMSOTC→ MSO(TC).

I For an NLOGSPACE numeric predicate Qp and ψ of the form
p(µ1, . . . , µk), define ψ∗ as ϕ+

p (µ1/X1, . . . , µk/Xk), where + is the
translation defined above and ϕp the defining FO(TC) formula of Qp.

I For ψ of the form µ = #{x | ϕ}, ψ∗ is Hxy(ϕ∗, µ(y)).

I For ψ of the form ∃µiϕ, define ψ∗ as ∃µiϕ∗.
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Order invariant MSO

A formula ϕ ∈ MSO over τ≤ is order-invariant, if for every τ -structure A and
expansions A′ and A∗ of A to the vocabulary τ≤, in which ≤A′ and ≤A∗ are
linear orders of A, we have that

A′ |= ϕ if and only if A∗ |= ϕ.

A class C of τ -structures is definable in order-invariant MSO if and only if the
class

{(A,≤) | A ∈ C and ≤ is a linear order of A}

is definable by some order-invariant MSO-formula.
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Order invariant MSO and MSO(TC)

Example

Consider the class
C = {A | |A| is a prime number}

of ∅-structures. The language of prime length words over some unary alphabet is
not regular and thus it follows via Büchi’s theorem that C is not definable in
order-invariant MSO. However the following formula of MSO(TC) defines C.

∃X∀Y ∀Z
(
∀x(X (x))∧ (size(Y , 1)∨ size(Z , 1)∨¬× (Y ,Z ,X ))

)
∧ ∃x∃y ¬x = y .

Corollary

For any vocabulary τ , there exists a class C of τ -structures such that C is
definable in MSO(TC) but it is not definable in order-invariant MSO.
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Order invariant MSO and MSO(TC)

Theorem

Over finite unary vocabularies MSO(TC) is strictly more expressive than
order-invariant MSO.

Proof.

The proof is based on Parikh’s Theorem (66):
For every regular language L its Parikh image (letter count) P(L) is a finite
union of linear sets.

A subset S of Nk is a linear set if

S = {~v0 +
m∑
i=1

ai~vi | a1, . . . , am ∈ N}

for some offset ~v0 ∈ Nk and generators ~v1, . . . , ~vm ∈ Nk .
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Open question

I Does the exists a formula of least fixed point logic LFP that is not
expressible in MSO(TC). On ordered structures, this would show that there
are problems in P that are not in NLIN, which is open (it is only know that
the two classes are different).

I Note that EVEN is definable in MSO(TC) but not in LFP (over empty
vocabulary).

I What is the relationship of MSO(TC) and order-invariant MSO over
vocabularies of higher arity?
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Happy Birthday Lauri!
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