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Logics for verification and specification of concurrent systems

Basic setting:

I System (e.g., piece of software or hardware)
 Kripke structure depicting the behaviour of the system

I A single run of the system
 a trace generated by the Kripke structure

I A property of the system (e.g., every request is eventually granted)
 a formula of some formal language expressing the property.

Model checking:

I Check whether a given system satisfies a given specification.

SAT solving:

I Check whether a given specification (or collection of) can be realised.
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Snapshot of our paper

State of the art:

I LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems
I Traceproperty: Each request is eventually granted (properties of traces)
I Hyperproperty: Each request is granted in bounded time (properties of sets of traces)

I HyperLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.

This paper:

I Temporal logics with team semantics for expressing hyperproperties
Purely modal logic & well suited for properties of unbounded number of traces.

I Expressivity: We relate variants of TeamLTL to HyperLogics
I Complexity: We explore the undecidability frontier of TeamLTL extensions

I Discovered a large EXPTIME fragment: left-flat and downward closed logics
I Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable
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Traceproperties and hyperproperties

Opening your office computer after holidays:

Traceproperties hold in a system if each trace (in isolation) has the property:

I The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

I The computer will be ready in bounded time.
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Logics for traceproperties and hyperproperties

I Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

I Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

I One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.
I LTL is decidable (PSPACE-complete model checking and satisfiability).
I FO2(≤) and FO3(≤) SAT are NEXPTIME-complete and non-elementary.
I LTL is bisimulation invariant (cannot separate systems whose traces behave similarly)

I Caveat: LTL can specify only traceproperties.



6/ 24

Logics for traceproperties and hyperproperties

Recipe for logics for hyperproperties:
A logic for traceproperties  add trace quantifiers

In LTL the satisfying object is a trace: T |= ϕ iff ∀t ∈ T : t |= ϕ

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | ϕUϕ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T ϕ

ϕ ::= ∃πϕ | ∀πϕ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: ∃pϕ, ∀pϕ
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Logics for traceproperties and hyperproperties

I Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
I Retain some desirable properties of LTL, but are not purely modal logics

I Model checking for ∃∗HyperLTL and HyperLTL are PSPACE and non-elementary.
I HyperLTL satisfiability is highly undecidable.
I HyperLTL formulae express properties expressible using fixed finite number of traces.

I Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

I Team semantics is a candidate for a purely modal logic without the above caveat.
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Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.
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Team Semantics: Historical Picture
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nän
en

M
odal

D
ep

en
den

ce
Log

ic

Vää
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LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: T |= ϕ iff ∀t ∈ T : t |= ϕ

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | ϕUϕ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T ϕ

ϕ ::= ∃πϕ | ∀πϕ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T , i) |= ϕ

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | Xϕ | ϕU | ϕWϕ

+ new atomic statements (dependence and inclusion atoms: dep(~p, q), ~p ⊆ ~q)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity
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Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and synchronous

(T , i) |= p iff ∀t ∈ T : t[i ](p) = 1 (T , i) |= ¬p iff ∀t ∈ T : t[i ](p) = 0

(T , i) |= Fϕ iff (T , j) |= ϕ for some j ≥ i (T , i) |= Gϕ iff (T , j) |= ϕ for all j ≥ i
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There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

∃p ∀π Fp ∧ G(p → G¬aπ)

Expressible in synchronous TeamLTL: FG¬a
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Examples: HyperLTL vs. TeamLTL

A trace-set T satisfies ϕ ∨ ψ if it decomposed to sets Tϕ and Tψ satisfying ϕ and ψ.

(T , i) |= ϕ ∨ ψ iff (T1, i) |= ϕ and (T2, i) |= ψ, for some T1 ∪ T2 = T

(T , i) |= ϕ ∧ ψ iff (T , i) |= ϕ and (T , i) |= ψ
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Examples: HyperLTL vs. TeamLTL

Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:

(T , i) |= dep(p1, . . . , pm, q) iff ∀t, t ′ ∈ T
( ∧

1≤j≤m
t[i ](pj) = t ′[i ](pj)

)
⇒ (t[i ](q) = t ′[i ](q))
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Examples: HyperLTL vs. TeamLTL

Boolean disjunction: (T , i) |= ϕ6 ψ iff (T , i) |= ϕ or (T , i) |= ψ.

Depending on an unknown input, execution traces either agree on a or on b.

Expressible in HyperLTL with three trace quantifiers:

∃π1 ∃π2 ∀π G(aπ1 ↔ aπ) ∨ G(bπ2 ↔ bπ).

Expressible in TeamLTL:

G dep(a) ∨ G dep(b) and G(a 6 ¬a) ∨ G(b 6 ¬b).
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Quantification of traces in TeamLTL

Inclusion atom p1 . . . pn ⊆ q1 . . . qn states: truth-values of p1 . . . pn occur for q1 . . . qn.

(T , i) |= p1 . . . pn ⊆ q1 . . . qn iff ∀t∃t ′t[i ](p1) = t ′[i ](q1), . . . , t[i ](pn) = t ′[i ](qn)

Inclusion atoms can be used to express traceproperties in TeamLTL:

I ∀π.ϕπ can be expressed with ϕ ⊆ >.

I ∃π.ϕπ can be expressed with > ⊆ ϕ.

Some properties involving single quantifier blocks can be expressed in TeamLTL.

I Π |=T ∀π1 . . . ∀πn.ϕ~π is related to
(T ′, 0) |= ϕ for all subteams T ′ ⊆ T of size at most n.

I Π |=T ∃π1 . . . ∃πn.ϕ~π is related to
(T ′, 0) |= ϕ for some subteam T ′ ⊆ T of size at most n.

No obvious way to mimic quantifier alternation without encoding gadgets to traces.
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Temporal team semantics

Definition
Temporal team is (T , i), where T a set of traces and i ∈ N.

(T , i) |= p iff ∀t ∈ T : t[0](p) = 1

(T , i) |= ¬p iff ∀t ∈ T : t[0](p) = 0

(T , i) |= φ ∧ ψ iff (T , i) |= φ and (T , i) |= ψ

(T , i) |= φ ∨ ψ iff (T1, i) |= φ and (T2, i) |= ψ, for some T1,T2 s.t. T1 ∪ T2 = T

(T , i) |= Xϕ iff (T , i + 1) |= ϕ

(T , i) |= φUψ iff ∃k ≥ i s.t. (T , k) |= ψ and ∀m : i ≤ m < k ⇒ (T ,m) |= φ

(T , i) |= φWψ iff ∀k ≥ i : (T , k) |= φ or ∃m s.t. i ≤ m ≤ k and (T ,m) |= ψ

As usual Fϕ := (>Uϕ) and Gϕ := (ϕW⊥).

TeamLTL(6,⊆) is the extension with the atoms and extra connectives in the brackets.
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Motivation of the current work

I recent interest into temporal team semantics
[Krebs et al 2018, Lück 2020, Kontinen & Sandsrtöm 2021, Gutsfeld et al. 2021]

I develop purely modal logics for hyperproperties

I discover decidable and expressive logics for hyperproperties

I investigate connections between HyperLTL and TeamLTL variants
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Results of our paper
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Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [ϕ1, . . . , ϕn]B for an
n-tuple (ϕ1, . . . , ϕn) of LTL-formulae:

(T , i) |= [ϕ1, . . . , ϕn]B iff {(Jφ1K(t,i), . . . , JφnK(t,i)) | t ∈ T} ∈ B.

Theorem
TeamLTL(6,NE,

1

A) can express all [ϕ1, . . . , ϕn]B .

TeamLTL(6,
1

A) can express all [ϕ1, . . . , ϕn]B , for downward closed B.

I B is downdard closed if S1 ∈ B & S2 ⊆ S1 imply S2 ∈ B.

I (T , i) |= NE iff T 6= ∅.
I (T , i) |= Aϕ iff (T ′, i) |= ϕ, for all T ′ ⊆ T .

I (T , i) |=
1

Aϕ iff ({t}, i) |= ϕ, for all t ∈ T .
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Complexity results

Logic Model Checking Result

TeamLTL without ∨ in PSPACE [Krebs et al. 2018]

k-coherent TeamLTL(∼) in EXPSPACE

left-flat TeamLTL(6,
1

A) in EXPSPACE

TeamLTL(⊆,6) Σ0
1-hard

TeamLTL(⊆,6,A) Σ1
1-hard

TeamLTL(∼) complete for third-order arithmetic [Luck 2020]

Table: Complexity results.

I k-coherence: (T , i) |= ϕ iff (S , i) |= ϕ for all S ⊆ T s.t. |S | ≤ k

I left-flatness: Restrict U and W syntactically to (
1

AϕUψ) and (
1

AϕWψ)

I ∼ is contradictory negation and TeamLTL(∼) subsumes all the other logics
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Source of inclusion results

TeamLTL(6,
1

A) ≤
u

∃∗q∀πHyperQPTL (assuming left-flatness)

≤ ∃p
u

Q∗p∀πHyperQPTL+ (general case)

< †

TeamLTL(6,NE,
1

A) ≤ ∃p
u

Q∗p∃∗π∀πHyperQPTL+

≤

[Luck 2020] (assuming k-coherence)
TeamLTL(∼) ≤ ∀kHyperLTL

Table: Expressivity results. † holds since TeamLTL(
1

A,6) is downward closed.
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Source of Undecidability

Definition
A non-deterministic 3-counter machine M consists of a list I of n instructions that
manipulate three counters Cl , Cm and Cr . All instructions are of the following forms:

I C+
a goto {j1, j2}, C−a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a ∈ {l ,m, r}, 0 ≤ j1, j2 < n.

I configuration: tuple (i , j , k, l), where 0 ≤ i < n is the next instruction to be
executed, and j , k , l ∈ N are the current values of the counters Cl , Cm and Cr .

I computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0, 0).

I computation b-recurring if the instruction labelled b occurs infinitely often in it.

I computation is lossy if the counter values can non-deterministically decrease

Theorem (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (Σ0

1-complete) Σ1
1-complete.
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Undecidability results

Theorem
Model checking for TeamLTL(6,⊆) is Σ1

0-hard.
Model checking for TeamLTL(6,⊆,A) is Σ1

1-hard.

Proof Idea:

I reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(6,⊆,A)

I TeamLTL(6,⊆) suffices to enforce lossy computation

I (T [i ,∞], 0) encodes the value of counters of the ith configuration
the value of Ca is the cardinality of the set {t ∈ T [i ,∞] | t[0](ca) = 1}
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Conclusion

I TeamLTL is a promising purely modal alternative for a logic for hyperproperties
I Expressiveness

I Uncomparable with HyperLTL
I Assuming left-flatness and downward closure translates to

u

∃∗q∀πHyperQPTL.

I In general translates to HyperQPTL+.

I Complexity
I In EXPSPACE assuming left-flatness and downward closure
I In EXPSPACE assuming k-coherence
I TeamLTL(⊆,6) already undecidable
I TeamLTL(⊆,6,A) highly undecidable

Thank you!
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