Linear-time Temporal Logic with Team Semantics:
Expressivity and Complexity

1 2

Jonni Virtema® Jana Hofmann
Bernd Finkbeiner?> Juha Kontinen® Fan Yang?

1 University of Sheffield, UK
2 CISPA Helmholtz Center for Information Security, Germany
3 University of Helsinki Finland

15.12.2021 — FSTTCS™21

Logics for verification and specification of concurrent systems

Basic setting:
» System (e.g., piece of software or hardware)
~» Kripke structure depicting the behaviour of the system
» A single run of the system
~> a trace generated by the Kripke structure

» A property of the system (e.g., every request is eventually granted)
~» a formula of some formal language expressing the property.

Logics for verification and specification of concurrent systems

Basic setting:
» System (e.g., piece of software or hardware)
~» Kripke structure depicting the behaviour of the system
» A single run of the system
~> a trace generated by the Kripke structure

» A property of the system (e.g., every request is eventually granted)
~» a formula of some formal language expressing the property.

Model checking:
» Check whether a given system satisfies a given specification.
SAT solving:

» Check whether a given specification (or collection of) can be realised.

Snapshot of our paper

State of the art:
» LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems
> Traceproperty: Each request is eventually granted (properties of traces)
» Hyperproperty: Each request is granted in bounded time (properties of sets of traces)
» HyperlLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.

Snapshot of our paper

State of the art:
» LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems
> Traceproperty: Each request is eventually granted (properties of traces)
» Hyperproperty: Each request is granted in bounded time (properties of sets of traces)
» HyperlLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.
This paper:
> Temporal logics with team semantics for expressing hyperproperties
Purely modal logic & well suited for properties of unbounded number of traces.
» Expressivity: We relate variants of TeamLTL to HyperLogics
» Complexity: We explore the undecidability frontier of TeamLTL extensions

» Discovered a large EXPTIME fragment: left-flat and downward closed logics
» Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

Traceproperties and hyperproperties

Opening your office computer after holidays:

r(eady)
Q L R R
l\ OO0 -

I(oading) @ I(oading) s Le R

R
—) @ D P D@
c(onnecting) ® 2
\ /‘ B LcC Le R
hut

Traceproperties and hyperproperties

Opening your office computer after holidays:

r(eady)
G L R R
l\ OO0 -

I(oading) @ I(oading) s Le R

R
—_—D e —50—20 ¢ -
c(onnecting) ® 2
\ /1 5 2 Le R
hut

Traceproperties hold in a system if each trace (in isolation) has the property

» The computer will be eventually ready (or will be loading forever)
Hyperproperties are properties of sets of traces:

» The computer will be ready in bounded time.

Logics for traceproperties and hyperproperties

» Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

» Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

» One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.

» LTL is decidable (PSPACE-complete model checking and satisfiability).
» FO?(<) and FO*(<) SAT are NEXPTIME-complete and non-elementary.
» LTL is bisimulation invariant (cannot separate systems whose traces behave similarly)

> Caveat: LTL can specify only traceproperties.

Logics for traceproperties and hyperproperties

Recipe for logics for hyperproperties:
A logic for traceproperties ~» add trace quantifiers

In LTL the satisfying object is a trace: T =@ iff Vite T 1t =
pu=ploel(eVe)| Xe|eUp
In HyperLTL the satisfying object is a set of traces and a trace assignment: Il =1 ¢

@ = 3dmp [Vmp [
Yu=pr | [(PVY) | XY [YUY

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: Ipp, Vpy

Logics for traceproperties and hyperproperties

» Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
» Retain some desirable properties of LTL, but are not purely modal logics

» Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary.
» HyperLTL satisfiability is highly undecidable.
» HyperLTL formulae express properties expressible using fixed finite number of traces.

Logics for traceproperties and hyperproperties

» Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc
» Retain some desirable properties of LTL, but are not purely modal logics

» Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary
» HyperLTL satisfiability is highly undecidable.

» HyperLTL formulae express properties expressible using fixed finite number of traces

» Bounded termination is not definable in HyperLTL (but is in HyperQPTL)
r(eady)

S

l(oading) @ ’\ I(oading)

a
S8 —36—38 ¢
— .
c(onnecting) ® 2
\ /‘ S 2 ¢ Le R
v
hut

» Team semantics is a candidate for a purely modal logic without the above caveat

Core of Team Semantics

» In most studied logics formulae are evaluated in a single state of affairs.
Eg.,
P a first-order assignment in first-order logic,
P a propositional assignment in propositional logic,
» a possible world of a Kripke structure in modal logic.

Core of Team Semantics

» In most studied logics formulae are evaluated in a single state of affairs.
Eg.,
P a first-order assignment in first-order logic,
P a propositional assignment in propositional logic,
» a possible world of a Kripke structure in modal logic.
» In team semantics sets of states of affairs are considered.
Eg.,
P a set of first-order assignments in first-order logic,

P a set of propositional assignments in propositional logic,
P a set of possible worlds of a Kripke structure in modal logic.

> These sets of things are called teams.

Team Semantics: Historical Picture

1960 Y 1990 2000 2005 2010 2015 2020

9/ 24

LTL, HyperLTL, and TeamLTL
In LTL the satisfying object is a trace: T = iff Vie T it =
pu=p|op|(pVe)| Xe|pUp

In HyperLTL the satisfying object is a set of traces and a trace assignment: 1 =7 ¢

@ = 3mp |V [¢
Yiu=po | 20| (W V) [Xy [pUD

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T,7) = ¢
pu=plopl(eVe)l(ene)| XelpU|eWe

+ new atomic statements (dependence and inclusion atoms: dep(p,q), p C q)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity

Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and synchronous
(T,i)Epiff Yte T tli](p) =1 (T,i)=—p iff Yt T:t[lij(p)=0

(T,i) EFp iff (T,j)E¢forsomej>i (T,i)E Gy iff (T,j)E¢forallj>i

Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and synchronous
(T, Epiff Vee T t[i](p) =1 (T,i))E—p iff Vte T : t[i](p) =0

(T,i) EFe iff (T,j)E¢@forsomej>i (T,i)E Gy iff (T,j)Epforallj>i

There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

pVrFp AG(p — G—ay)

Expressible in synchronous TeamLTL: FG —a

Examples: HyperLTL vs. TeamLTL

There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

dpVrFp A G(p — G-ay)

Expressible in synchronous TeamLTL: FG —a

O—=>0O—=>0O—=O—=>0—->0 ---
O—=®@—=>O—=>0—->0—->0 -
O—=0O—=>O—=>O—=>0—>0 ---
O—=0O—=>0O0—=>0—->0—->0 ---

Examples: HyperLTL vs. TeamLTL

There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

dpVrFp A G(p — G-ay)

Expressible in synchronous TeamLTL: FG —a

O—=>0O—=>0O—=O—=>@®—® ---
O—=@—=>O—=>0O0—=>@—>® ---
O—=0O—=O—=O—=>@—® -
O—=0O—=>0O—=>0O—=®—>® ---

Examples: HyperLTL vs. TeamLTL

There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

dpVrFp A G(p — G-ay)

Expressible in synchronous TeamLTL: FG —a

OO0
¢
?
©

Examples: HyperLTL vs. TeamLTL

A trace-set T satisfies ¢ V 1 if it decomposed to sets 7., and T, satisfying ¢ and 1.

(T,)) =V iff (T1,i) =@ and (Ta,i) =1, forsome iU T, =T
(T,i) E Ay iff (T,i)Epand(T,i)Ey

Examples: HyperLTL vs. TeamLTL

A trace-set T satisfies ¢ V 1 if it decomposed to sets 7., and T, satisfying ¢ and 1.

(T,)) =V iff (T1,i) =@ and (Ta,i) =1, forsome iU T, =T
(T,i) E Ay iff (T,i)Epand(T,i)Ey

HyperLTL: TeamLTL:

Va7’ F((ax A arr) V (b A brr)) (F o)V (F b)

@-O-O-0—-E@-O-O-0O— - O-O-@-O-O-O0-O-O— -

@-0-O-O~O—0-O~O— - ..6.0..0

OGO GBOO . 000 0O000—-
O-O-O-O-0-O0-O-0O— -

Examples: HyperLTL vs. TeamLTL

Dependence atom dep(ps, ..., pm, q) States that py, ..., py functionally determine g:

(T.i) = dep(pr, -, pms) iff Vet € T A elil(py) = ¢1il(py)) = (¢lil(a) = ¢i1(a)

1<j<m

Examples: HyperLTL vs. TeamLTL

Dependence atom dep(ps, ..., pm, q) States that py, ..., py functionally determine g:

(T.i) = dep(pr, -, pms) iff Vet € T A elil(py) = ¢1il(py)) = (¢lil(a) = ¢i1(a)

4

TeamLTL:
(G dep(il,0)) V (G dep(i2,0))

Nondeterministic dependence: “o either depends on i1 or on i2”

19~O~(~9-O)

O
O
O

“whenever the traces agree on i1, they agree on 0”

?

\

?

a ! I “whenever the traces agree on i2, they agree on 0”

?

Examples: HyperLTL vs. TeamLTL

Boolean disjunction: (T,/) =@ @ iff (T,i) =@ or (T,i) 1.

Depending on an unknown input, execution traces either agree on a or on b.

Expressible in HyperLTL with three trace quantifiers:
3my Ima V7 G(ar, <> ax) V G(bx, <> byr).
Expressible in TeamLTL:

Gdep(a) vV Gdep(b) and G(a @ —a) V G(b @ —b).

Quantification of traces in TeamLTL

Inclusion atom p1...p, € g1...q, states: truth-values of py ... p, occur for q; ... qp.

(T,VEPpL--.pn Cq1...q, iff VeIt't[i](p1) = t'[1](q1),- -, tli](pn) = t'[](gn)

Inclusion atoms can be used to express traceproperties in TeamLTL:
> VYm.pn can be expressed with ¢ C T.
» dm.p, can be expressed with T C .

Quantification of traces in TeamLTL

Inclusion atom p1...p, € g1...q, states: truth-values of py ... p, occur for q; ... qp.

(T,VEPpL--.pn Cq1...q, iff VeIt't[i](p1) = t'[1](q1),- -, tli](pn) = t'[](gn)

Inclusion atoms can be used to express traceproperties in TeamLTL:
> VYm.pn can be expressed with ¢ C T.
» dm.p, can be expressed with T C .
Some properties involving single quantifier blocks can be expressed in TeamLTL.

» =7 V... V7,07 is related to
(T',0) = ¢ for all subteams T" C T of size at most n.

» [N |}=7 dmy ... 37,07 is related to
(T',0) = ¢ for some subteam T’ C T of size at most n.

No obvious way to mimic quantifier alternation without encoding gadgets to traces.

Temporal team semantics

Definition
Temporal team is (T, i), where T a set of traces and i € N.

T, Ep iff Vte T:t[0](p) =1

T, E-p iff vVt eT:t[0](p)=0

T,VEony iff (T,)E¢and (T,i)E¢

T,NE¢vy iff (Ti,i))E¢and (T2,i) E, forsome Ty, Tost. iUT, =T
T, E X iff (T,i+1) ¢

T,i) E oUy iff Jk>ist (T,k)EvYandVm:i<m<k=(T,mE¢
T,i) E oWy iff Vk>i:(T,k)E¢orImst. i<m<kand (T,mEqvy

As usual Fp = (TUyp) and Gy = (pW.L).

TeamLTL(®, C) is the extension with the atoms and extra connectives in the brackets.

Motivation of the current work

P recent interest into temporal team semantics
[Krebs et al 2018, Liick 2020, Kontinen & Sandsrtom 2021, Gutsfeld et al. 2021]

» develop purely modal logics for hyperproperties
» discover decidable and expressive logics for hyperproperties
P investigate connections between HyperLTL and TeamLTL variants

Results of our paper

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1, ..., ¢a]g for an
n-tuple (¢1,...,p,) of LTL-formulae:

(T,i) = e, enle iff {([D1le,iys - -5 [Pnl(eiy) | t € T} € B.

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1, ..., ¢a]g for an
n-tuple (¢1,...,p,) of LTL-formulae:

(T,i) = e, enle iff {([D1le,iys - -5 [Pnl(eiy) | t € T} € B.

Theorem)
TeamLTL(®,NE, A) can express all [¢1,...,¢nlB-

TeamLTL(@, A) can express all [¢1,...,¢n|B, for downward closed B.
» B is downdard closed if 51 € B & 5, C 51 imply 5, € B.
> (T,i) ENEff T #0.
> (T,i) = Apiff (T',i) = @, forall T C T.

> (T,i) = Apiff ({t},i) = forall t e T.

Complexity results

Logic | Model Checking Result

TeamLTL without V in PSPACE [Krebs et al. 2018]
k-coherent TeamLTL(~) | in EXPSPACE
left-flat TeamLTL(@,A) | in EXPSPACE

TeamLTL(C, @) ¥ 9-hard
TeamLTL(C, @,A) ¥1-hard
TeamLTL(~) complete for third-order arithmetic [Luck 2020]

Table: Complexity results.

» k-coherence: (T,i) = iff (S,i) =pforall SC T st |S| <k

> left-flatness: Restrict U and W syntactically to (/i\goUw) and (Ang@b)
> ~ is contradictory negation and TeamLTL(~) subsumes all the other logics

Source of inclusion results

TeamLTL(@,A) < EI*V HyperQPTL (assuming left-flatness)
< 3 Q ¥, HyperQPTL' (general case)
Al
TeamLTL(®, NE, A) < 35 (uQ; 3V, HyperQPTL"
IN [Luck 2020] (assuming k-coherence)
TeamLTL(~) < VAHyperLTL

Table: Expressivity results. T holds since TeamLTL(A, @) is downward closed.

Source of Undecidability

Definition
A non-deterministic 3-counter machine M consists of a list / of n instructions that
manipulate three counters C;, C,, and C,. All instructions are of the following forms:

» CF goto {j1,/2}, C; goto {j1,/2} if C; =0 goto jielse goto o,
where a € {I,m,r}, 0 < ji,/o < n.
» configuration: tuple (i,/, k, /), where 0 < i < n is the next instruction to be
executed, and j, k,/ € N are the current values of the counters C;, C,, and C,.
P> computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0,0, 0).
» computation b-recurring if the instruction labelled b occurs infinitely often in it.

» computation is lossy if the counter values can non-deterministically decrease

Theorem (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (Z(lj—comp/ete) Z%—complete.

Undecidability results

Theorem
Model checking for TeamLTL(®, C) is ¥-hard.
Model checking for Team LTL(®, C,A) is ¥1-hard.

Proof Idea:

» reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(®, C,A)

» TeamLTL(®@, C) suffices to enforce lossy computation

» (T[i,o0],0) encodes the value of counters of the ith configuration
the value of C, is the cardinality of the set {t € T[i,o0] | t[0](cs) = 1}

Conclusion

» TeamLTL is a promising purely modal alternative for a logic for hyperproperties

P Expressiveness
» Uncomparable with HyperLTL
> Assuming left-flatness and downward closure translates to 33V, HyperQPTL.

» In general translates to HyperQPTL+.

> Complexity
» In EXPSPACE assuming left-flatness and downward closure
» In EXPSPACE assuming k-coherence
» TeamlTL(C, @) already undecidable
» TeamLTL(C, @, A) highly undecidable

Conclusion

» TeamLTL is a promising purely modal alternative for a logic for hyperproperties

P Expressiveness
» Uncomparable with HyperLTL
» Assuming left-flatness and downward closure translates to é’gvﬂHyperQPTL.
> In general translates to HyperQPTL'.
> Complexity
» In EXPSPACE assuming left-flatness and downward closure
» In EXPSPACE assuming k-coherence

» TeamLTL(C, @) already undecidable
» TeamLTL(C, @, A) highly undecidable

Thank you!

