Linear-time Temporal Logic with Team Semantics: Expressivity and Complexity

Jonni Virtema¹ Jana Hofmann² Bernd Finkbeiner² Juha Kontinen³ Fan Yang³

University of Sheffield, UK
 CISPA Helmholtz Center for Information Security, Germany
 University of Helsinki Finland

15.12.2021 — FSTTCS'21

Logics for verification and specification of concurrent systems

Basic setting:

- ► A single run of the system

 → a trace generated by the Kripke structure
- ► A property of the system (e.g., every request is eventually granted)
 → a formula of some formal language expressing the property.

Logics for verification and specification of concurrent systems

Basic setting:

- A single run of the system

 → a trace generated by the Kripke structure
- ► A property of the system (e.g., every request is eventually granted)
 → a formula of some formal language expressing the property.

Model checking:

► Check whether a given system satisfies a given specification.

SAT solving:

► Check whether a given specification (or collection of) can be realised.

Snapshot of our paper

State of the art:

- ► LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc. are prominent logics for traceproperties vs. hyperproperties of systems
 - Traceproperty: Each request is eventually granted (properties of traces)
 - ▶ Hyperproperty: Each request is granted in bounded time (properties of sets of traces)
- HyperLogics are of high complexity or undecidable.
 Not well suited for properties involving unbounded number of traces.

Snapshot of our paper

State of the art:

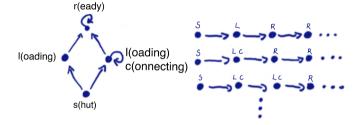
- ► LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc. are prominent logics for traceproperties vs. hyperproperties of systems
 - ► Traceproperty: Each request is eventually granted (properties of traces)
 - ▶ Hyperproperty: Each request is granted in bounded time (properties of sets of traces)
- HyperLogics are of high complexity or undecidable.
 Not well suited for properties involving unbounded number of traces.

This paper:

- ► Temporal logics with team semantics for expressing hyperproperties Purely modal logic & well suited for properties of unbounded number of traces.
- Expressivity: We relate variants of TeamLTL to HyperLogics
- Complexity: We explore the undecidability frontier of TeamLTL extensions
 - ▶ Discovered a large EXPTIME fragment: left-flat and downward closed logics
 - ► Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

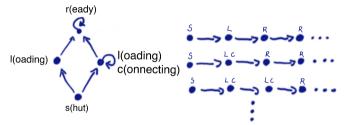
Traceproperties and hyperproperties

Opening your office computer after holidays:



Traceproperties and hyperproperties

Opening your office computer after holidays:



Traceproperties hold in a system if each trace (in isolation) has the property:

▶ The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

► The computer will be ready in bounded time.

- ► Linear-time temporal logic (LTL) is one of the most prominent logics for the specification and verification of reactive and concurrent systems.
- Model checking tools like SPIN and NuSMV automatically verify whether a given computer system is correct with respect to its LTL specification.
- One reason for the success of LTL over first-order logic is that LTL is a purely modal logic and thus has many desirable properties.
 - ▶ LTL is decidable (PSPACE-complete model checking and satisfiability).
 - ▶ $FO^2(\leq)$ and $FO^3(\leq)$ SAT are NEXPTIME-complete and non-elementary.
 - ▶ LTL is bisimulation invariant (cannot separate systems whose traces behave similarly)
- Caveat: LTL can specify only traceproperties.

Recipe for logics for hyperproperties:

A logic for traceproperties \leadsto add trace quantifiers

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \vee \varphi) \mid X\varphi \mid \varphi U\varphi$$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi \models_{\mathcal{T}} \varphi$

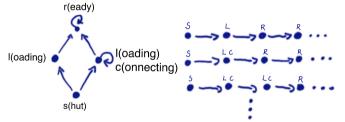
$$\varphi ::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi$$

$$\psi ::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi$$

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: $\exists p\varphi$, $\forall p\varphi$

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - ► Model checking for ∃*HyperLTL and HyperLTL are PSPACE and non-elementary.
 - HyperLTL satisfiability is highly undecidable.
 - ► HyperLTL formulae express properties expressible using fixed finite number of traces.

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - ► Model checking for ∃*HyperLTL and HyperLTL are PSPACE and non-elementary.
 - HyperLTL satisfiability is highly undecidable.
 - ▶ HyperLTL formulae express properties expressible using fixed finite number of traces.
- Bounded termination is not definable in HyperLTL (but is in HyperQPTL)



► Team semantics is a candidate for a purely modal logic without the above caveat.

Core of Team Semantics

In most studied logics formulae are evaluated in a single state of affairs.

E.g.,

- ▶ a first-order assignment in first-order logic,
- a propositional assignment in propositional logic,
- a possible world of a Kripke structure in modal logic.

Core of Team Semantics

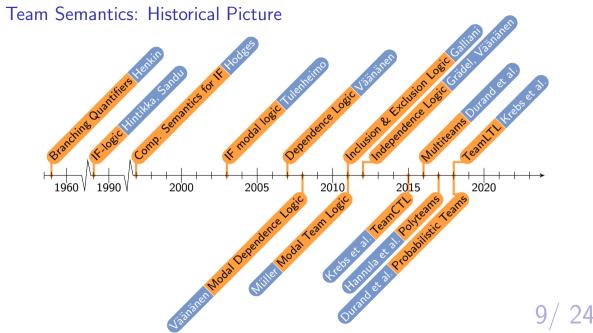
In most studied logics formulae are evaluated in a single state of affairs.

E.g.,

- a first-order assignment in first-order logic,
- a propositional assignment in propositional logic,
- a possible world of a Kripke structure in modal logic.
- In team semantics sets of states of affairs are considered.

E.g.,

- a set of first-order assignments in first-order logic,
- ▶ a set of propositional assignments in propositional logic,
- ▶ a set of possible worlds of a Kripke structure in modal logic.
- ► These sets of things are called teams.



LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \vee \varphi) \mid X\varphi \mid \varphi U\varphi$$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi \models_{\mathcal{T}} \varphi$

$$arphi ::= \exists \pi arphi \mid orall \pi arphi \mid \psi \ \psi ::= oldsymbol{
ho}_\pi \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi$$

In TeamLTL the satisfying object is a set of traces. We use team semantics: $(T, i) \models \varphi$

$$\varphi ::= p \mid \neg p \mid (\varphi \vee \varphi) \mid (\varphi \wedge \varphi) \mid X\varphi \mid \varphi U \mid \varphi W \varphi$$

- + new atomic statements (dependence and inclusion atoms: $dep(\vec{p}, q)$, $\vec{p} \subseteq \vec{q}$)
- $+ \ \mathsf{additional} \ \mathsf{connectives} \ \big(\mathsf{Boolean} \ \mathsf{disjunction}, \ \mathsf{contradictory} \ \mathsf{negation}, \ \mathsf{etc.} \big)$

Extensions are a well-defined way to delineate expressivity and complexity

Temporal team semantics is universal and synchronous

$$(T,i) \models p \text{ iff } \forall t \in T : t[i](p) = 1$$
 $(T,i) \models \neg p \text{ iff } \forall t \in T : t[i](p) = 0$ $(T,i) \models \mathsf{F}\varphi \text{ iff } (T,j) \models \varphi \text{ for some } j \geq i$ $(T,i) \models \mathsf{G}\varphi \text{ iff } (T,j) \models \varphi \text{ for all } j \geq i$

Temporal team semantics is universal and synchronous

$$(T,i) \models p \text{ iff } \forall t \in T : t[i](p) = 1$$
 $(T,i) \models \neg p \text{ iff } \forall t \in T : t[i](p) = 0$ $(T,i) \models \mathsf{F}\varphi \text{ iff } (T,j) \models \varphi \text{ for some } j \geq i \quad (T,i) \models \mathsf{G}\varphi \text{ iff } (T,j) \models \varphi \text{ for all } j \geq i$

There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, orall \pi \, \mathsf{F} p \wedge \mathsf{G}(p o \mathsf{G}
eg a_\pi)$$

There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, \forall \pi \, \mathsf{F} p \wedge \mathsf{G}(p o \mathsf{G} \neg a_\pi)$$

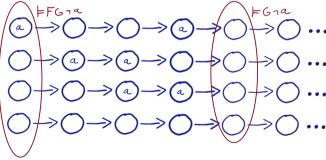
$$\begin{array}{c} \textcircled{a} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{a} \rightarrow \textcircled{a} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \end{array}$$

There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, \forall \pi \, \mathsf{F} p \wedge \mathsf{G}(p o \mathsf{G} \neg a_\pi)$$

There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, orall \pi \, \mathsf{F} p \wedge \mathsf{G}(p o \mathsf{G}
eg a_\pi)$$

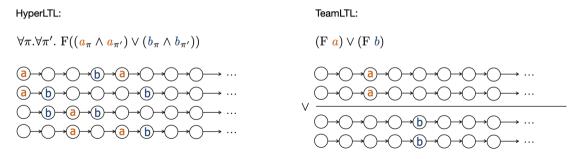


A trace-set T satisfies $\varphi \lor \psi$ if it decomposed to sets T_{φ} and T_{ψ} satisfying φ and ψ .

$$(T,i) \models \varphi \lor \psi$$
 iff $(T_1,i) \models \varphi$ and $(T_2,i) \models \psi$, for some $T_1 \cup T_2 = T$ $(T,i) \models \varphi \land \psi$ iff $(T,i) \models \varphi$ and $(T,i) \models \psi$

A trace-set T satisfies $\varphi \lor \psi$ if it decomposed to sets T_{φ} and T_{ψ} satisfying φ and ψ .

$$(T,i) \models \varphi \lor \psi$$
 iff $(T_1,i) \models \varphi$ and $(T_2,i) \models \psi$, for some $T_1 \cup T_2 = T$ $(T,i) \models \varphi \land \psi$ iff $(T,i) \models \varphi$ and $(T,i) \models \psi$



Dependence atom $dep(p_1, \ldots, p_m, q)$ states that p_1, \ldots, p_m functionally determine q:

$$(\mathcal{T},i)\models \mathsf{dep}(p_1,\ldots,p_m,q) \;\; \mathsf{iff} \;\; orall t,t'\in \mathcal{T}\Big(igwedge_{i,j} t[i](p_j)=t'[i](p_j)\Big) \Rightarrow (t[i](q)=t'[i](q))$$

Dependence atom $dep(p_1, \ldots, p_m, q)$ states that p_1, \ldots, p_m functionally determine q:

$$(T,i) \models \operatorname{dep}(p_1,\ldots,p_m,q) \text{ iff } \forall t,t' \in T\Big(\bigwedge_{i \in \mathcal{I}} t[i](p_j) = t'[i](p_j)\Big) \Rightarrow (t[i](q) = t'[i](q))$$

$$(G \ dep(i1, o)) \lor (G \ dep(i2, o))$$

Nondeterministic dependence: "o either depends on i1 or on i2"

 $(2,0) \longrightarrow (2) \longrightarrow (2,0) \longrightarrow \cdots$

Boolean disjunction: $(T, i) \models \varphi \otimes \psi$ iff $(T, i) \models \varphi$ or $(T, i) \models \psi$.

Depending on an unknown input, execution traces either agree on a or on b.

Expressible in HyperLTL with three trace quantifiers:

$$\exists \pi_1 \, \exists \pi_2 \, \forall \pi \, \mathsf{G}(a_{\pi_1} \leftrightarrow a_{\pi}) \vee \mathsf{G}(b_{\pi_2} \leftrightarrow b_{\pi}).$$

Expressible in TeamLTL:

$$G \operatorname{dep}(a) \vee G \operatorname{dep}(b)$$
 and $G(a \otimes \neg a) \vee G(b \otimes \neg b)$.

Quantification of traces in TeamLTL

Inclusion atom $p_1 \dots p_n \subseteq q_1 \dots q_n$ states: truth-values of $p_1 \dots p_n$ occur for $q_1 \dots q_n$.

$$(T,i) \models p_1 \dots p_n \subseteq q_1 \dots q_n \text{ iff } \forall t \exists t' t[i](p_1) = t'[i](q_1), \dots, t[i](p_n) = t'[i](q_n)$$

Inclusion atoms can be used to express traceproperties in TeamLTL:

- \blacktriangleright $\forall \pi. \varphi_{\pi}$ can be expressed with $\varphi \subseteq \top$.
- $ightharpoonup \exists \pi. \varphi_{\pi} \text{ can be expressed with } \top \subseteq \varphi.$

Quantification of traces in TeamLTL

Inclusion atom $p_1 \dots p_n \subseteq q_1 \dots q_n$ states: truth-values of $p_1 \dots p_n$ occur for $q_1 \dots q_n$.

$$(T,i) \models p_1 \dots p_n \subseteq q_1 \dots q_n \text{ iff } \forall t \exists t' t[i](p_1) = t'[i](q_1), \dots, t[i](p_n) = t'[i](q_n)$$

Inclusion atoms can be used to express traceproperties in TeamLTL:

- \blacktriangleright $\forall \pi. \varphi_{\pi}$ can be expressed with $\varphi \subseteq \top$.
- $ightharpoonup \exists \pi. \varphi_{\pi} \text{ can be expressed with } \top \subseteq \varphi.$

Some properties involving single quantifier blocks can be expressed in TeamLTL.

- ▶ $\prod \models_T \forall \pi_1 \dots \forall \pi_n . \varphi_{\vec{\pi}}$ is related to $(T', 0) \models \varphi$ for all subteams $T' \subseteq T$ of size at most n.
- ▶ $\prod \models_{\mathcal{T}} \exists \pi_1 \dots \exists \pi_n. \varphi_{\vec{\pi}}$ is related to $(\mathcal{T}', 0) \models \varphi$ for some subteam $\mathcal{T}' \subseteq \mathcal{T}$ of size at most n.

No obvious way to mimic quantifier alternation without encoding gadgets to traces.

Temporal team semantics

Definition

Temporal team is (T, i), where T a set of traces and $i \in \mathbb{N}$.

$$\begin{aligned} (T,i) &\models p & \text{iff} & \forall t \in T : t[0](p) = 1 \\ (T,i) &\models \neg p & \text{iff} & \forall t \in T : t[0](p) = 0 \\ (T,i) &\models \phi \land \psi & \text{iff} & (T,i) &\models \phi \text{ and } (T,i) &\models \psi \\ (T,i) &\models \phi \lor \psi & \text{iff} & (T_1,i) &\models \phi \text{ and } (T_2,i) &\models \psi, \text{ for some } T_1, T_2 \text{ s.t. } T_1 \cup T_2 = T \\ (T,i) &\models \mathsf{X}\varphi & \text{iff} & (T,i+1) &\models \varphi \\ (T,i) &\models \phi \mathsf{U}\psi & \text{iff} & \exists k \geq i \text{ s.t. } (T,k) &\models \psi \text{ and } \forall m : i \leq m < k \Rightarrow (T,m) &\models \phi \\ (T,i) &\models \phi \mathsf{W}\psi & \text{iff} & \forall k \geq i : (T,k) &\models \phi \text{ or } \exists m \text{ s.t. } i \leq m \leq k \text{ and } (T,m) &\models \psi \end{aligned}$$

As usual $F\varphi := (\top U\varphi)$ and $G\varphi := (\varphi W \bot)$.

 $\operatorname{TeamLTL}(\emptyset,\subseteq)$ is the extension with the atoms and extra connectives in the brackets.

Motivation of the current work

- ▶ recent interest into temporal team semantics [Krebs et al 2018, Lück 2020, Kontinen & Sandsrtöm 2021, Gutsfeld et al. 2021]
- develop purely modal logics for hyperproperties
- discover decidable and expressive logics for hyperproperties
- ▶ investigate connections between HyperLTL and TeamLTL variants

Results of our paper

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an n-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

$$(T,i) \models [\varphi_1,\ldots,\varphi_n]_B$$
 iff $\{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B$.

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an n-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

$$(T,i) \models [\varphi_1,\ldots,\varphi_n]_B \quad \text{iff} \quad \{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B.$$

Theorem

TeamLTL(\otimes , NE, $\overset{1}{A}$) can express all $[\varphi_1, \ldots, \varphi_n]_B$.

TeamLTL(\bigcirc , $\overset{1}{A}$) can express all $[\varphi_1, \dots, \varphi_n]_B$, for downward closed B.

- ▶ *B* is downdard closed if $S_1 \in B \& S_2 \subseteq S_1$ imply $S_2 \in B$.
- $ightharpoonup (T,i) \models \text{NE iff } T \neq \emptyset.$
- ▶ $(T, i) \models A\varphi$ iff $(T', i) \models \varphi$, for all $T' \subseteq T$.
- $ightharpoonup (T,i) \models \stackrel{1}{\mathsf{A}} \varphi \text{ iff } (\{t\},i) \models \varphi, \text{ for all } t \in T.$

Complexity results

Logic	Model Checking Result	
TeamLTL without ∨	in PSPACE	[Krebs et al. 2018]
k -coherent $\mathrm{TeamLTL}(\sim)$	in EXPSPACE	
$left\text{-}flat\mathrm{TeamLTL}(\otimes, \overset{1}{A})$	in EXPSPACE	
$\mathrm{TeamLTL}(\subseteq, \otimes)$	Σ_1^0 -hard	
$\mathrm{TeamLTL}(\subseteq, \otimes, A)$	Σ^1_1 -hard	
$\mathrm{TeamLTL}(\sim)$	complete for third-order arithmetic [Luck 2020]	

Table: Complexity results.

- ▶ *k*-coherence: $(T, i) \models \varphi$ iff $(S, i) \models \varphi$ for all $S \subseteq T$ s.t. $|S| \le k$
- ▶ left-flatness: Restrict U and W syntactically to $(\mathring{A}\varphi U\psi)$ and $(\mathring{A}\varphi W\psi)$
- $ightharpoonup \sim$ is contradictory negation and $\mathrm{TeamLTL}(\sim)$ subsumes all the other logics

Source of inclusion results

Table: Expressivity results. \dagger holds since $\mathrm{TeamLTL}(\mathring{A}, \otimes)$ is downward closed.

Source of Undecidability

Definition

A non-deterministic 3-counter machine M consists of a list I of n instructions that manipulate three counters C_I , C_m and C_r . All instructions are of the following forms:

 $ightharpoonup C_a^+$ goto $\{j_1,j_2\}$, C_a^- goto $\{j_1,j_2\}$, if $C_a=0$ goto j_1 else goto j_2 ,

where $a \in \{I, m, r\}, 0 \le j_1, j_2 < n$.

- **configuration**: tuple (i, j, k, l), where $0 \le i < n$ is the next instruction to be executed, and $j, k, l \in \mathbb{N}$ are the current values of the counters C_l , C_m and C_r .
- \triangleright computation: infinite sequence of consecutive configurations starting from the initial configuration (0,0,0,0).
- ▶ computation b-recurring if the instruction labelled b occurs infinitely often in it.
- ▶ computation is lossy if the counter values can non-deterministically decrease

Theorem (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy) b-recurring computation for a given b is $(\Sigma_1^0$ -complete) Σ_1^1 -complete.

Undecidability results

Theorem

Model checking for $\operatorname{TeamLTL}(\mathbb{Q},\subseteq)$ is Σ_0^1 -hard. Model checking for $\operatorname{TeamLTL}(\mathbb{Q},\subseteq,\mathsf{A})$ is Σ_1^1 -hard.

Proof Idea:

- reduce existence of *b*-recurring computation of given 3-counter machine M and instruction label b to model checking problem of $\operatorname{TeamLTL}(\emptyset, \subseteq, A)$
- ▶ $TeamLTL(\emptyset, \subseteq)$ suffices to enforce lossy computation
- ▶ $(T[i,\infty],0)$ encodes the value of counters of the *i*th configuration the value of C_a is the cardinality of the set $\{t \in T[i,\infty] \mid t[0](c_a) = 1\}$

Conclusion

- ▶ TeamLTL is a promising purely modal alternative for a logic for hyperproperties
- Expressiveness
 - Uncomparable with HyperLTL
 - Assuming left-flatness and downward closure translates to $\ddot{\exists}_{q}^{*} \forall_{\pi} \mathrm{HyperQPTL}$.
 - ▶ In general translates to HyperQPTL⁺.
- Complexity
 - ► In EXPSPACE assuming left-flatness and downward closure
 - ► In EXPSPACE assuming k-coherence
 - ▶ TeamLTL(\subseteq , \otimes) already undecidable
 - ▶ TeamLTL(\subseteq , \otimes , A) highly undecidable

Conclusion

- ► TeamLTL is a promising purely modal alternative for a logic for hyperproperties
- Expressiveness
 - Uncomparable with HyperLTL
 - Assuming left-flatness and downward closure translates to $\stackrel{\text{\tiny d}}{=}_a^* \forall_\pi \text{HyperQPTL}$.
 - ▶ In general translates to HyperQPTL⁺.
- Complexity
 - ► In EXPSPACE assuming left-flatness and downward closure
 - ► In EXPSPACE assuming k-coherence
 - ▶ TeamLTL(\subseteq , \otimes) already undecidable
 - ▶ TeamLTL(\subseteq , \otimes , A) highly undecidable

Thank you!