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Propositional Inclusion and Independence Logic

Grammar of propositional logic PL:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ).

Extensions PL by inclusion atoms, independence atoms, and classical negation.

ϕ ::= p1, . . . , pn ⊆ q1, . . . , qn | ~r ⊥~p ~q | ∼ϕ.

The logics are denoted by PL[⊥c,∼], PL[⊆,∼], etc.
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Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

Usual team semantics (lax) for atoms and Boolean connectives.

X |= ∼ϕ ⇔ X 6|= ϕ

X |= ~q ⊥~p ~r ⇔ ∀s, t ∈ X : if s(~p) = t(~p)

then there exists u ∈ X : u(~p~q) = s(~p~q) and u(~r) = t(~r).

X |= ~p ⊆ ~q ⇔ ∀s ∈ X∃t ∈ X : s(~p) = t(~q).
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Already PL[∼] is highly expressive!

Most connectives studied in team sematics can be defined in PL[∼].

The connectives below can be defined in PL[∼] with polynomial blow up.

X |= ϕ 6 ψ ⇔ X |= ϕ or X |= ψ,

X |= ϕ⊗ ψ ⇔ ∀Y ,Z ⊆ X : if Y ∪ Z = X , then Y |= ϕ or Z |= ψ,

X |= ϕ→ ψ ⇔ ∀Y ⊆ X : if Y |= ϕ, then Y |= ψ,

X |= max(p1, . . . , pn) ⇔ {(s(p1), . . . , s(pn)) | s ∈ X} = {0, 1}n.

Atoms ⊆ and ⊥c can be expressed in PL[∼] with exponential blow up.
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Expression Defining PL[∼]-formula

ϕ⊗ ψ ∼(∼ϕ ∨ ∼ψ)

ϕ 6 ψ ∼(∼ϕ ∧ ∼ψ)

ϕ→ ψ (∼ϕ 6 ψ)⊗∼(p ∨ ¬p)

dep(p) p 6 ¬p

dep(p1, . . . , pn, q)
∧n

i=1 dep(pi )→ dep(q)

max(p1, . . . , pn) ∼
∨n

i=1 dep(pi )
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PTIME Reductions Between Validity and Satisfiability

Note: X |= ∼(p ∧ ¬p) iff X is non-empty.

For ϕ ∈ PL[C,∼], define

ϕSAT := max(~x)→ ((p ∨ ¬p) ∨ (ϕ ∧ ∼(p ∧ ¬p))),

ϕVAL := max(~x) ∧ (∼(p ∧ ¬p)→ ϕ),

where ~x lists the variables of ϕ

Theorem

I ϕ is satisfiable iff ϕSAT is valid.

I ϕ is valid iff ϕVAL is satisfiable.
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Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.
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Idea: SAT for PL[⊥c,∼] is Hard for AEXPTIME(poly)

AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations”.

We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines with
the satisfiability problems of PL[⊥c,∼] and PL[⊆,∼].
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Characterization via Oracle Machines

The classes ΣEXP
k and ΠEXP

k of the exponential time hierarchy are characterized
by polynomial-time constant-alternation oracle Turing machines that query to k
oracles (Orponen 1983).

Theorem

A set A belongs to the class AEXPTIME(poly) iff there exist a polynomial f and
a polynomial-time alternating oracle Turing machine M such that, for all x,

x ∈ A iff Q1A1 . . .Qf (n)Af (n)(M accepts x with oracles (A1, . . . ,Af (n))),

where n is the length of x and Q1, . . . ,Qf (n) alternate between ∃ and ∀, i.e
Qi+1 ∈ {∀, ∃} \ {Qi}.
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Characterization Without Alternation

Alternating Turing machine can be replaced by a sequence of word quantifiers
over a deterministic Turing machine (Chandra, Kozen, and Stockmeyer 1981).

Theorem

A set A belongs to the class AEXPTIME(poly) iff there exists a polynomial-time
deterministic oracle Turing machine M∗ such that x ∈ A iff

Q1A1 . . .Qf (n)Af (n)Q
′
1~y1 . . .Q

′
g(n)~yg(n)

(M∗ accepts (x , ~y1, . . . , ~yg(n)) with oracle (A1, . . . ,Af (n))),

where Q1, . . . ,Qf (n) and Q ′1, . . . ,Q
′
g(n) are alternating sequences of quantifiers ∃

and ∀, and each ~yi is a g(n)-ary sequence of propositional variables where n is
the length of x.

g is a polynomial that bounds the running time of M.
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From Turing Machines to SAT(PL[⊆,∼])

The whole computation of an oracle Turing machine is encoded to a team X .

Encoded information is accessed via expressions of the form:

∃s ∈ X s.t. {s} |= ϕ, where ϕ is in PL.

In PL[∼] the above is written as X |= ∼¬ϕ.
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Example

The membership of a binary string ~a in an oracle Ai is expressed by

X |= ∼¬(~q = ~a ∧ ~r = bin(i)).

Tuple ~q lists the propositions used to encode the content of oracles.

Tuple ~r encodes the indices of the oracles.
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Simulating Quantification

Recall:

I The whole computation is encoded in a team.

I Idea of encoding: ∃s ∈ X s.t. {s} |= ϕ.

I X |= ϕ⊗ ψ iff ∀Y ,Z s.t. Y ∪ Z = X : Y |= ϕ or Z |= ψ.

I X |= ϕ ∨ ψ iff ∃Y ,Z s.t. Y ∪ Z = X : Y |= ϕ and Z |= ψ.

We use ∨ to simulate existential quantification of relations and points.

We use ⊗ to simulate universal quantification of relations and points.
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Idea of Quantification

I Fix the domain D of the encoding.

I ∃Yϕ(Y ) 7→ ∃A ⊆ D: ϕ(D \ A).

I ∀Yϕ(Y ) 7→ ∀A ⊆ D: ϕ(D \ A).

I Maintain uniformity in quantification.
(Arities of A and D do not coincide.)
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Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.



Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

15/ 19

Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.



Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

15/ 19

Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.



Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

15/ 19

Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.



Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

16/ 19

Complexity of PL[⊥c,∼]

Theorem

SAT(PL[⊥c,∼]) is AEXPTIME(poly)-complete.

Proof.

Hardness: Done.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking.

Corollary

VAL(PL[⊥c,∼]) is AEXPTIME(poly)-complete.
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Further Complexity Results

Theorem

SAT(PL[⊆,∼]) and VAL(PL[⊆,∼]) are AEXPTIME(poly)-complete.

Theorem

MC(PL[⊆,∼]) and MC(PL[⊥c,∼]) are PSPACE-complete
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Further Complexity Results

Theorem

VAL(PL[⊆]) is coNP-complete

Proof.

Hardness: VAL(PL) is coNP-complete.
Membership:

1. PL[⊆] is union closed.

2. ϕ ∈ PL[⊆] is valid iff ϕ is valid on singleton teams.

3. On singleton teams inclusion atoms can be eliminated.

4. Check validity of the PL-translatee.
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Complexity Results
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