
Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

1/ 19

Complexity of Propositional Inclusion and
Independence Logic

Jonni Virtema

Leibniz Universität Hannover, Germany
jonni.virtema@gmail.com

Joint work with Miika Hannula, Juha Kontinen, and Heribert Vollmer

Dagstuhl Workshop
25th of June, 2015

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

2/ 19

Propositional Inclusion and Independence Logic

Grammar of propositional logic PL:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ).

Extensions PL by inclusion atoms, independence atoms, and classical negation.

ϕ ::= p1, . . . , pn ⊆ q1, . . . , qn | ~r ⊥~p ~q | ∼ϕ.

The logics are denoted by PL[⊥c,∼], PL[⊆,∼], etc.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

3/ 19

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

Usual team semantics (lax) for atoms and Boolean connectives.

X |= ∼ϕ ⇔ X 6|= ϕ

X |= ~q ⊥~p ~r ⇔ ∀s, t ∈ X : if s(~p) = t(~p)

then there exists u ∈ X : u(~p~q) = s(~p~q) and u(~r) = t(~r).

X |= ~p ⊆ ~q ⇔ ∀s ∈ X∃t ∈ X : s(~p) = t(~q).

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

3/ 19

Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP→ {0, 1} with the same
domain.

Usual team semantics (lax) for atoms and Boolean connectives.

X |= ∼ϕ ⇔ X 6|= ϕ

X |= ~q ⊥~p ~r ⇔ ∀s, t ∈ X : if s(~p) = t(~p)

then there exists u ∈ X : u(~p~q) = s(~p~q) and u(~r) = t(~r).

X |= ~p ⊆ ~q ⇔ ∀s ∈ X∃t ∈ X : s(~p) = t(~q).

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

4/ 19

Already PL[∼] is highly expressive!

Most connectives studied in team sematics can be defined in PL[∼].

The connectives below can be defined in PL[∼] with polynomial blow up.

X |= ϕ 6 ψ ⇔ X |= ϕ or X |= ψ,

X |= ϕ⊗ ψ ⇔ ∀Y ,Z ⊆ X : if Y ∪ Z = X , then Y |= ϕ or Z |= ψ,

X |= ϕ→ ψ ⇔ ∀Y ⊆ X : if Y |= ϕ, then Y |= ψ,

X |= max(p1, . . . , pn) ⇔ {(s(p1), . . . , s(pn)) | s ∈ X} = {0, 1}n.

Atoms ⊆ and ⊥c can be expressed in PL[∼] with exponential blow up.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

4/ 19

Already PL[∼] is highly expressive!

Most connectives studied in team sematics can be defined in PL[∼].

The connectives below can be defined in PL[∼] with polynomial blow up.

X |= ϕ 6 ψ ⇔ X |= ϕ or X |= ψ,

X |= ϕ⊗ ψ ⇔ ∀Y ,Z ⊆ X : if Y ∪ Z = X , then Y |= ϕ or Z |= ψ,

X |= ϕ→ ψ ⇔ ∀Y ⊆ X : if Y |= ϕ, then Y |= ψ,

X |= max(p1, . . . , pn) ⇔ {(s(p1), . . . , s(pn)) | s ∈ X} = {0, 1}n.

Atoms ⊆ and ⊥c can be expressed in PL[∼] with exponential blow up.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

4/ 19

Already PL[∼] is highly expressive!

Most connectives studied in team sematics can be defined in PL[∼].

The connectives below can be defined in PL[∼] with polynomial blow up.

X |= ϕ 6 ψ ⇔ X |= ϕ or X |= ψ,

X |= ϕ⊗ ψ ⇔ ∀Y ,Z ⊆ X : if Y ∪ Z = X , then Y |= ϕ or Z |= ψ,

X |= ϕ→ ψ ⇔ ∀Y ⊆ X : if Y |= ϕ, then Y |= ψ,

X |= max(p1, . . . , pn) ⇔ {(s(p1), . . . , s(pn)) | s ∈ X} = {0, 1}n.

Atoms ⊆ and ⊥c can be expressed in PL[∼] with exponential blow up.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

5/ 19

Expression Defining PL[∼]-formula

ϕ⊗ ψ ∼(∼ϕ ∨ ∼ψ)

ϕ 6 ψ ∼(∼ϕ ∧ ∼ψ)

ϕ→ ψ (∼ϕ 6 ψ)⊗∼(p ∨ ¬p)

dep(p) p 6 ¬p

dep(p1, . . . , pn, q)
∧n

i=1 dep(pi)→ dep(q)

max(p1, . . . , pn) ∼
∨n

i=1 dep(pi)

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

6/ 19

PTIME Reductions Between Validity and Satisfiability

Note: X |= ∼(p ∧ ¬p) iff X is non-empty.

For ϕ ∈ PL[C,∼], define

ϕSAT := max(~x)→ ((p ∨ ¬p) ∨ (ϕ ∧ ∼(p ∧ ¬p))),

ϕVAL := max(~x) ∧ (∼(p ∧ ¬p)→ ϕ),

where ~x lists the variables of ϕ

Theorem

I ϕ is satisfiable iff ϕSAT is valid.

I ϕ is valid iff ϕVAL is satisfiable.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

6/ 19

PTIME Reductions Between Validity and Satisfiability

Note: X |= ∼(p ∧ ¬p) iff X is non-empty.

For ϕ ∈ PL[C,∼], define

ϕSAT := max(~x)→ ((p ∨ ¬p) ∨ (ϕ ∧ ∼(p ∧ ¬p))),

ϕVAL := max(~x) ∧ (∼(p ∧ ¬p)→ ϕ),

where ~x lists the variables of ϕ

Theorem

I ϕ is satisfiable iff ϕSAT is valid.

I ϕ is valid iff ϕVAL is satisfiable.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

6/ 19

PTIME Reductions Between Validity and Satisfiability

Note: X |= ∼(p ∧ ¬p) iff X is non-empty.

For ϕ ∈ PL[C,∼], define

ϕSAT := max(~x)→ ((p ∨ ¬p) ∨ (ϕ ∧ ∼(p ∧ ¬p))),

ϕVAL := max(~x) ∧ (∼(p ∧ ¬p)→ ϕ),

where ~x lists the variables of ϕ

Theorem

I ϕ is satisfiable iff ϕSAT is valid.

I ϕ is valid iff ϕVAL is satisfiable.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

7/ 19

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

7/ 19

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

7/ 19

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

7/ 19

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

7/ 19

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

8/ 19

Idea: SAT for PL[⊥c,∼] is Hard for AEXPTIME(poly)

AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations”.

We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines with
the satisfiability problems of PL[⊥c,∼] and PL[⊆,∼].

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

8/ 19

Idea: SAT for PL[⊥c,∼] is Hard for AEXPTIME(poly)

AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations”.

We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines with
the satisfiability problems of PL[⊥c,∼] and PL[⊆,∼].

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

8/ 19

Idea: SAT for PL[⊥c,∼] is Hard for AEXPTIME(poly)

AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations”.

We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines with
the satisfiability problems of PL[⊥c,∼] and PL[⊆,∼].

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

9/ 19

Characterization via Oracle Machines

The classes ΣEXP
k and ΠEXP

k of the exponential time hierarchy are characterized
by polynomial-time constant-alternation oracle Turing machines that query to k
oracles (Orponen 1983).

Theorem

A set A belongs to the class AEXPTIME(poly) iff there exist a polynomial f and
a polynomial-time alternating oracle Turing machine M such that, for all x,

x ∈ A iff Q1A1 . . .Qf (n)Af (n)(M accepts x with oracles (A1, . . . ,Af (n))),

where n is the length of x and Q1, . . . ,Qf (n) alternate between ∃ and ∀, i.e
Qi+1 ∈ {∀, ∃} \ {Qi}.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

10/ 19

Characterization Without Alternation

Alternating Turing machine can be replaced by a sequence of word quantifiers
over a deterministic Turing machine (Chandra, Kozen, and Stockmeyer 1981).

Theorem

A set A belongs to the class AEXPTIME(poly) iff there exists a polynomial-time
deterministic oracle Turing machine M∗ such that x ∈ A iff

Q1A1 . . .Qf (n)Af (n)Q
′
1~y1 . . .Q

′
g(n)~yg(n)

(M∗ accepts (x , ~y1, . . . , ~yg(n)) with oracle (A1, . . . ,Af (n))),

where Q1, . . . ,Qf (n) and Q ′1, . . . ,Q
′
g(n) are alternating sequences of quantifiers ∃

and ∀, and each ~yi is a g(n)-ary sequence of propositional variables where n is
the length of x.

g is a polynomial that bounds the running time of M.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

11/ 19

From Turing Machines to SAT(PL[⊆,∼])

The whole computation of an oracle Turing machine is encoded to a team X .

Encoded information is accessed via expressions of the form:

∃s ∈ X s.t. {s} |= ϕ, where ϕ is in PL.

In PL[∼] the above is written as X |= ∼¬ϕ.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

12/ 19

Example

The membership of a binary string ~a in an oracle Ai is expressed by

X |= ∼¬(~q = ~a ∧ ~r = bin(i)).

Tuple ~q lists the propositions used to encode the content of oracles.

Tuple ~r encodes the indices of the oracles.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

13/ 19

Simulating Quantification

Recall:

I The whole computation is encoded in a team.

I Idea of encoding: ∃s ∈ X s.t. {s} |= ϕ.

I X |= ϕ⊗ ψ iff ∀Y ,Z s.t. Y ∪ Z = X : Y |= ϕ or Z |= ψ.

I X |= ϕ ∨ ψ iff ∃Y ,Z s.t. Y ∪ Z = X : Y |= ϕ and Z |= ψ.

We use ∨ to simulate existential quantification of relations and points.

We use ⊗ to simulate universal quantification of relations and points.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

13/ 19

Simulating Quantification

Recall:

I The whole computation is encoded in a team.

I Idea of encoding: ∃s ∈ X s.t. {s} |= ϕ.

I X |= ϕ⊗ ψ iff ∀Y ,Z s.t. Y ∪ Z = X : Y |= ϕ or Z |= ψ.

I X |= ϕ ∨ ψ iff ∃Y ,Z s.t. Y ∪ Z = X : Y |= ϕ and Z |= ψ.

We use ∨ to simulate existential quantification of relations and points.

We use ⊗ to simulate universal quantification of relations and points.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

14/ 19

Idea of Quantification

I Fix the domain D of the encoding.

I ∃Yϕ(Y) 7→ ∃A ⊆ D: ϕ(D \ A).

I ∀Yϕ(Y) 7→ ∀A ⊆ D: ϕ(D \ A).

I Maintain uniformity in quantification.
(Arities of A and D do not coincide.)

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

15/ 19

Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

15/ 19

Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

15/ 19

Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

15/ 19

Example of Quantification

Our encoding uses variables p1, . . . , pn: max(p1, . . . , pn)

Existential quantification of the oracle Ai : ~r = bin(i) ∨ (α ∧ ϕ).

Formula α takes care of the uniformity. (⊆ or ⊥c needed)

α := max(~y) ∧ ~y ⊥ ~q~r

r encodes names of oracles, q encodes content of oracles, y encodes everything
else.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

16/ 19

Complexity of PL[⊥c,∼]

Theorem

SAT(PL[⊥c,∼]) is AEXPTIME(poly)-complete.

Proof.

Hardness: Done.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking.

Corollary

VAL(PL[⊥c,∼]) is AEXPTIME(poly)-complete.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

16/ 19

Complexity of PL[⊥c,∼]

Theorem

SAT(PL[⊥c,∼]) is AEXPTIME(poly)-complete.

Proof.

Hardness: Done.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking.

Corollary

VAL(PL[⊥c,∼]) is AEXPTIME(poly)-complete.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

17/ 19

Further Complexity Results

Theorem

SAT(PL[⊆,∼]) and VAL(PL[⊆,∼]) are AEXPTIME(poly)-complete.

Theorem

MC(PL[⊆,∼]) and MC(PL[⊥c,∼]) are PSPACE-complete

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

17/ 19

Further Complexity Results

Theorem

SAT(PL[⊆,∼]) and VAL(PL[⊆,∼]) are AEXPTIME(poly)-complete.

Theorem

MC(PL[⊆,∼]) and MC(PL[⊥c,∼]) are PSPACE-complete

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

18/ 19

Further Complexity Results

Theorem

VAL(PL[⊆]) is coNP-complete

Proof.

Hardness: VAL(PL) is coNP-complete.
Membership:

1. PL[⊆] is union closed.

2. ϕ ∈ PL[⊆] is valid iff ϕ is valid on singleton teams.

3. On singleton teams inclusion atoms can be eliminated.

4. Check validity of the PL-translatee.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

19/ 19

Complexity Results

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.

Complexity of
Propositional
Inclusion and
Independence

Logic

Jonni Virtema

The logics

Expressive Power

Complexity

19/ 19

Complexity Results Thanks!

Logic SAT VAL MC

PL NP 0 coNP 0 NC1
1

PL[dep(·)] NP 3 NEXPTIME 4 NP 2

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME 5 coNP in P 6

PL[⊥c,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

0 Cook 1971, Levin 1973, 1 Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, 4 V. 2014, 5 Hella, Kuusisto, Meier, Vollmer 2015,
6 Hella.

	The logics
	Expressive Power
	Complexity

