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Grammar of propositional logic PL:

The logics

pu=plpl(eVe)|(pAp).

Extensions PL by inclusion atoms, independence atoms, and classical negation.

Q=P P S AL qn | T Lp G| ~e.

The logics are denoted by PL[ L., ~|, PL[C, ~], etc.
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A propositional team is a set of assigments s : PROP — {0, 1} with the same
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domain.

Usual team semantics (lax) for atoms and Boolean connectives.




Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP — {0, 1} with the same
domain.
Usual team semantics (lax) for atoms and Boolean connectives.

XE~p & XEo
XEGqLlLsr & Vs teX: ifs(p)=t(p)

then there exists u € X : u(pq) = s(pq) and u(r) = t(r).

XEpPCG & VseXdteX:s(p)=t(q).
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Most connectives studied in team sematics can be defined in PL[~].
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Most connectives studied in team sematics can be defined in PL[~].

Expressive Power

The connectives below can be defined in PL[~] with polynomial blow up.

XEpoy & XEgpo XEY,
XEpoy o VY, ZCX:ifYUZ=X,then Y=y or Z =1,
XEe—=19v < VYCX:ifYEgp thenY E 1,

X E max(p1,...,pn) < {(s(p1),...,s(pn)) | s € X} ={0,1}".
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Most connectives studied in team sematics can be defined in PL[~].

Expressive Power

The connectives below can be defined in PL[~] with polynomial blow up.

XEv0y & XEgpo X1,

XEe®y & VY, ZCX: fYUZ=X,thenY EyporZE,
XEe—=19v < VYCX:ifYEgp thenY E 1,
X ':max(plr-'?pn) Ang {(S(p1)7_..,s(pn))ISEX}:{O,].}n.

Atoms C and L. can be expressed in PL[~] with exponential blow up.
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90 ® 1/} N(NSD \/ Nw) Expressive Power
POy ~(~p A ~)
= (~p @ )@ ~(pV—p)
dep(p) p@-p

dep(p1,---,Pn,q)  Aiz;dep(pi) — dep(q)

maX(Pla SRR pn) ~ \/7:1 dep(P:)
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PTIME Reductions Between Validity and Satisfiability

Note: X = ~(p A —p) iff X is non-empty.
For ¢ € PL|[C, ~], define

@sar := max(X) = ((pV =p) V(e A ~(pA-p))),
@vaL = max(x) A (~(p A —p) = ),

where X lists the variables of ¢
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NOte X ): N(p /\ _|p) ifF X iS nOn—empty Jonni Virtema

FOI’ Y2 S PE[C, N], deﬁne Expressive Power

@sar := max(X) = ((pV =p) V(e A ~(pA-p))),
@vaL = max(x) A (~(p A —p) = ),

where X lists the variables of ¢

> o is satisfiable iff psaT is valid.

> o is valid iff pyar, is satisfiable.
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Logic SAT VAL MC
PL NP O coNP? NG, ! _
Pﬁ[dep()] Complexity
PL[L]
PLIC]
PL[Lc,~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.
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Complexity Results

Logic SAT VAL MC
PL NP coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
PLIL] NP in coNEXPTIMENP NP
PL[C] EXPTIME® coNP in PO
PL[Lc,~] AEXPTIME(poly) AEXPTIME(poly) PSPACE
AEXPTIME(poly)  AEXPTIME(poly)  PSPACE

PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.
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AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations” .
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We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.
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AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations” .

Complexity

We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines with
the satisfiability problems of PL[ L., ~] and PL[C, ~].
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The classes and of the exponential time hierarchy are characterized
by polynomial-time constant-alternation oracle Turing machines that query to k
oracles (Orponen 1983).

Complexity

Theorem

A set A belongs to the class AEXPTIME(poly) iff there exist a polynomial f and
a polynomial-time alternating oracle Turing machine M such that, for all x,

x € Aiff Q1A ... Qr(n)Af(n)(M accepts x with oracles (Ay, ..., A¢(n))),

where n is the length of x and Q1,. .., Qf(, alternate between 3 and V, i.e

Qiy1 € {V, I\ {Qi}.
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Theorem

Ex

A set A belongs to the class AEXPTIME(poly) iff there exists a polynomial-time |
deterministic oracle Turing machine M* such that x € A iff

QuA1 - .. Qe(n)Ar(n) QLY - - - Qg(m)Va(n)
(M* accepts (X, Y1, - ., Yg(n)) with oracle (Ay, ..., Af(n)));

where @1, ..., Q¢(ny and Qy, .. ., Qé

and Y, and each y; is a g(n)-ary sequence of propositional variables where n is
the length of x.

(m) @r€ alternating sequences of quantifiers 3

g is a polynomial that bounds the running time of M.




From Turing Machines to SAT(PL[C, ~])

The whole computation of an oracle Turing machine is encoded to a team X.

Encoded information is accessed via expressions of the form:

ds € X s.t. {s} =, where ¢ isin PL.

In PL[~] the above is written as X |= ~—p.
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The membership of a binary string 3 in an oracle A; is expressed by

Complexity

X | ~=(qg=3anr=bin(i)).
Tuple g lists the propositions used to encode the content of oracles.

Tuple 7" encodes the indices of the oracles.
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Recall:

» The whole computation is encoded in a team.

» Idea of encoding: Js € X s.t. {s} F ¢.

» X Eey iff VY, Zst. YUZ=X:Y EporZE.
XEpvey iff JY,Zst. YUZ=X: Y Egpand Z .

Complexity

v
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Recall:
» The whole computation is encoded in a team.
» Idea of encoding: Js € X s.t. {s} F ¢.
» X Eey iff VY, Zst. YUZ=X:Y EporZE.
» XE=Epvy iff Y, Zst. YUZ=X: Y Eypand Z = 1.

Complexity

We use V to simulate existential quantification of relations and points.

We use ® to simulate universal quantification of relations and points.
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Fix the domain D of the encoding.

v

Complexity

> 3Yp(Y) — FACD: oD\ A).

» VYp(Y) — VACD: o(D\A).

v

Maintain uniformity in quantification.
(Arities of A and D do not coincide.)




Complexity of
Propositional

Example of Quantification
Inclusion and

Independence
Logic

Jonni Virtema

Our encoding uses variables p1, ..., pn: max(p1,...,Pn)
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Our encoding uses variables p1, ..., pn: max(p1,...,Pn)

Existential quantification of the oracle A;: r=Dbin(i) V (a A ).

Complexity
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Our encoding uses variables ps, ..., pp: max(pi, .- ., Pn) fonni Virtema
Existential quantification of the oracle A;: r=Dbin(i) V (a A ).
Complexity

Formula « takes care of the uniformity. (C or L. needed)
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Our encoding uses variables p1, ..., pn: max(p1,...,Pn)

Existential quantification of the oracle A;: r=Dbin(i) V (a A ).

Complexity

Formula « takes care of the uniformity. (C or L. needed)

a:=max(y)ANy L gr

r encodes names of oracles, g encodes content of oracles, y encodes everything
else.
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SAT(PL[Lc, ~]) is AEXPTIME(poly)-complete.

Hardness: Done.

Membership: Guess a possibly exponential-size team T and do APTIME model
checking. [

Complexity
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Theorem
SAT(PL[Lc,~]) is AEXPTIME(poly)-complete.

Complexity

Proof.

Hardness: Done.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking. [

Corollary

VAL(PL[Lc,~]) is AEXPTIME(poly)-complete.
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SAT(PL[C, ~]) and VAL(PL[C, ~]) are AEXPTIME(poly)-complete.
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Theorem Complexity

SAT(PL[C, ~]) and VAL(PL[C, ~]) are AEXPTIME(poly)-complete.

MC(PL[C, ~]) and MC(PL[ L., ~]) are PSPACE-complete
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VAL(PL[C]) is coNP-complete

Logic
Proof.

Hardness: VAL(PL) is coNP-complete.
Membership:

1. PL[C] is union closed.
2. ¢ € PL[C] is valid iff ¢ is valid on singleton teams.

Jonni Virtema
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3. On singleton teams inclusion atoms can be eliminated.
4. Check validity of the PL-translatee.
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Complexity Results

Thanks!

Logic SAT VAL MC
PL NP0 coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
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