Complexity of Propositional Inclusion and
Independence Logic

Jonni Virtema

Leibniz Universitat Hannover, Germany
jonni.virtema@gmail.com

Joint work with Miika Hannula, Juha Kontinen, and Heribert Vollmer

Dagstuhl Workshop
25th of June, 2015

Complexity of
Propositional
Inclusion and
Independence
Logic

Jonni Virtema




Propositional Inclusion and Independence Logic Broposiions!

Propositional

Inclusion and

Independence
Logic

Jonni Virtema

Grammar of propositional logic PL:

The logics

pu=plpl(eVe)|(pAp).

Extensions PL by inclusion atoms, independence atoms, and classical negation.

Q=P P S AL qn | T Lp G| ~e.

The logics are denoted by PL[ L., ~|, PL[C, ~], etc.




Complexity of
Propositional

Team Semantics for Propositional Logics
Inclusion and

Independence
Logic

Jonni Virtema

A propositional team is a set of assigments s : PROP — {0, 1} with the same

The logics

domain.

Usual team semantics (lax) for atoms and Boolean connectives.




Team Semantics for Propositional Logics

A propositional team is a set of assigments s : PROP — {0, 1} with the same
domain.
Usual team semantics (lax) for atoms and Boolean connectives.

XE~p & XEo
XEGqLlLsr & Vs teX: ifs(p)=t(p)

then there exists u € X : u(pq) = s(pq) and u(r) = t(r).

XEpPCG & VseXdteX:s(p)=t(q).

Complexity of
Propositional
Inclusion and
Independence
Logic

Jonni Virtema

The logics




Complexity of

Already PL[~] is highly expressive! Propstions
Inclusion an
Independence

Logic

Jonni Virtema

Most connectives studied in team sematics can be defined in PL[~].

Expressive Power




Complexity of

Already PL[~] is highly expressive! Propostions!

Inclusion and
Independence
Logic

Jonni Virtema

Most connectives studied in team sematics can be defined in PL[~].

Expressive Power

The connectives below can be defined in PL[~] with polynomial blow up.

XEpoy & XEgpo XEY,
XEpoy o VY, ZCX:ifYUZ=X,then Y=y or Z =1,
XEe—=19v < VYCX:ifYEgp thenY E 1,

X E max(p1,...,pn) < {(s(p1),...,s(pn)) | s € X} ={0,1}".




Complexity of

Already PL[~] is highly expressive! Propostions!

Inclusion and
Independence
Logic

Jonni Virtema

Most connectives studied in team sematics can be defined in PL[~].

Expressive Power

The connectives below can be defined in PL[~] with polynomial blow up.

XEv0y & XEgpo X1,

XEe®y & VY, ZCX: fYUZ=X,thenY EyporZE,
XEe—=19v < VYCX:ifYEgp thenY E 1,
X ':max(plr-'?pn) Ang {(S(p1)7_..,s(pn))ISEX}:{O,].}n.

Atoms C and L. can be expressed in PL[~] with exponential blow up.




Complexity of
Propositional
Inclusion and

Independence

Logic
Expression Defining PL[~]-formula Jonni Virtema
90 ® 1/} N(NSD \/ Nw) Expressive Power
POy ~(~p A ~)
= (~p @ )@ ~(pV—p)
dep(p) p@-p

dep(p1,---,Pn,q)  Aiz;dep(pi) — dep(q)

maX(Pla SRR pn) ~ \/7:1 dep(P:)




Propositional

PTIME Reductions Between Validity and Satisfiability Propestions!

Inclusion and
Independence
Logic

Note: X = ~(p A —p) iff X is non-empty.

Jonni Virtema

Expressive Power




PTIME Reductions Between Validity and Satisfiability

Note: X = ~(p A —p) iff X is non-empty.
For ¢ € PL|[C, ~], define

@sar := max(X) = ((pV =p) V(e A ~(pA-p))),
@vaL = max(x) A (~(p A —p) = ),

where X lists the variables of ¢

Complexity of
Propositional
Inclusion and
Independence
Logic

Jonni Virtema

Expressive Power




PTIME Reductions Between Validity and Satisfiability Proposnions]
Inclusion and
Independence

Logic

NOte X ): N(p /\ _|p) ifF X iS nOn—empty Jonni Virtema

FOI’ Y2 S PE[C, N], deﬁne Expressive Power

@sar := max(X) = ((pV =p) V(e A ~(pA-p))),
@vaL = max(x) A (~(p A —p) = ),

where X lists the variables of ¢

> o is satisfiable iff psaT is valid.

> o is valid iff pyar, is satisfiable.




Complexity of
Propositional

Complexity Results ;
Independonce
Logic
Jonni Virtema
Logic SAT VAL MC
PL NP O coNP? NG, ! _
Pﬁ[dep()] Complexity
PL[L]
PLIC]
PL[Lc,~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.




Complexity of
Propositional

Complexity Results St
Independence
Logic
Logic SAT VAL MC Jonni Virtema
PL NP O coNP? NC, !
PLIdep()] NP3 NEXPTIME* NP2 Complesiy
PL[L]
PLIC]
PL[Lc,~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.




Complexity of
Propositional

Complexity Results St
Independence
Logic
Logic SAT VAL MC S
PL NP O coNP? NC, !
PLIdep(-)] NP3 NEXPTIME* NP2 Compleiy
PLIL]
PLIC] EXPTIMES in P6
PL[Le, ~]
PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.




Complexity of
Propositional

Complexity Results St
Independence
Logic
Logic SAT VAL MC B
PL NP O coNP? NC, !
PLIdep(-)] NP3 NEXPTIME* NP2 Compleiy
PLIL] NP in coNEXPTIMENP NP
PLIC] EXPTIME® coNP in PO
PL[Le,~]
PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,
3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.




Complexity Results

Logic SAT VAL MC
PL NP coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
PLIL] NP in coNEXPTIMENP NP
PL[C] EXPTIME® coNP in PO
PL[Lc,~] AEXPTIME(poly) AEXPTIME(poly) PSPACE
AEXPTIME(poly)  AEXPTIME(poly)  PSPACE

PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.

Complexity of
Propositional

Inclusion and
Independence
Logic

Jonni Virtema

Complexity




Propositional

|dea: SAT for PL[L.,~] is Hard for AEXPTIME(poly) ot

Inclusion and
Independence
Logic

Jonni Virtema

AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations” .

Complexity




|dea: SAT for PL[ L, ~] is Hard for AEXPTIME(poly) Gl

Inclusion and
Independence
Logic

Jonni Virtema

AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations” .

Complexity

We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.




|dea: SAT for PL[ L, ~] is Hard for AEXPTIME(poly) Gl

Inclusion and
Independence
Logic

Jonni Virtema

AEXPTIME(poly) = “alternating exponential time with polynomially many
alternations” .

Complexity

We relate AEXPTIME(poly) with alternating polynomial time Turing machines
that query to oracles obtained from a quantifier prefix of polynomial length.

Alternation can be replaced by a sequence of word quantifiers

We then relate computations of these deterministic oracle Turing machines with
the satisfiability problems of PL[ L., ~] and PL[C, ~].




Characterization via Oracle Machines i)
Inclusion and

Independence
Logic

EXP EXP Jonni Virtema
Zk rlk

The classes and of the exponential time hierarchy are characterized
by polynomial-time constant-alternation oracle Turing machines that query to k
oracles (Orponen 1983).

Complexity

Theorem

A set A belongs to the class AEXPTIME(poly) iff there exist a polynomial f and
a polynomial-time alternating oracle Turing machine M such that, for all x,

x € Aiff Q1A ... Qr(n)Af(n)(M accepts x with oracles (Ay, ..., A¢(n))),

where n is the length of x and Q1,. .., Qf(, alternate between 3 and V, i.e

Qiy1 € {V, I\ {Qi}.




Characterization Without Alternation Proposnions]
Inclusion and
Independence

Alternating Turing machine can be replaced by a sequence of word quantifiers tose

over a deterministic Turing machine (Chandra, Kozen, and Stockmeyer 1981).

Jonni Virtema

Theorem

Ex

A set A belongs to the class AEXPTIME(poly) iff there exists a polynomial-time |
deterministic oracle Turing machine M* such that x € A iff

QuA1 - .. Qe(n)Ar(n) QLY - - - Qg(m)Va(n)
(M* accepts (X, Y1, - ., Yg(n)) with oracle (Ay, ..., Af(n)));

where @1, ..., Q¢(ny and Qy, .. ., Qé

and Y, and each y; is a g(n)-ary sequence of propositional variables where n is
the length of x.

(m) @r€ alternating sequences of quantifiers 3

g is a polynomial that bounds the running time of M.




From Turing Machines to SAT(PL[C, ~])

The whole computation of an oracle Turing machine is encoded to a team X.

Encoded information is accessed via expressions of the form:

ds € X s.t. {s} =, where ¢ isin PL.

In PL[~] the above is written as X |= ~—p.

Complexity of
Propositional
Inclusion and
Independence
Logic

Jonni Virtema

Complexity




Complexity of

Exa m ple Propositional

Inclusion and
Independence
Logic

Jonni Virtema

The membership of a binary string 3 in an oracle A; is expressed by

Complexity

X | ~=(qg=3anr=bin(i)).
Tuple g lists the propositions used to encode the content of oracles.

Tuple 7" encodes the indices of the oracles.




Simulating Quantification Froaorsl

Inclusion and
Independence
Logic

Recall:

» The whole computation is encoded in a team.

» Idea of encoding: Js € X s.t. {s} F ¢.

» X Eey iff VY, Zst. YUZ=X:Y EporZE.
XEpvey iff JY,Zst. YUZ=X: Y Egpand Z .

Complexity

v




. . c . Complexity of
Simulating Quantification Propositions!
Inclusion and
Independence

Logic

Jonni Virtema

Recall:
» The whole computation is encoded in a team.
» Idea of encoding: Js € X s.t. {s} F ¢.
» X Eey iff VY, Zst. YUZ=X:Y EporZE.
» XE=Epvy iff Y, Zst. YUZ=X: Y Eypand Z = 1.

Complexity

We use V to simulate existential quantification of relations and points.

We use ® to simulate universal quantification of relations and points.




Complexity of

Idea Of Quantlflcatlon Propositional

Inclusion and
Independence
Logic

Jonni Virtema

Fix the domain D of the encoding.

v

Complexity

> 3Yp(Y) — FACD: oD\ A).

» VYp(Y) — VACD: o(D\A).

v

Maintain uniformity in quantification.
(Arities of A and D do not coincide.)




Complexity of
Propositional

Example of Quantification
Inclusion and

Independence
Logic

Jonni Virtema

Our encoding uses variables p1, ..., pn: max(p1,...,Pn)

Complexity




Complexity of
Propositional

Example of Quantification
Inclusion and

Independence
Logic

Jonni Virtema

Our encoding uses variables p1, ..., pn: max(p1,...,Pn)

Existential quantification of the oracle A;: r=Dbin(i) V (a A ).

Complexity




Complexity of

Example Of Quantlflcatlon Propositional
Inclusion and
Independence
Logic
Our encoding uses variables ps, ..., pp: max(pi, .- ., Pn) fonni Virtema
Existential quantification of the oracle A;: r=Dbin(i) V (a A ).
Complexity

Formula « takes care of the uniformity. (C or L. needed)




Complexity of

Example Of Quantlflcatlon Propositional

Inclusion and
Independence
Logic

Jonni Virtema

Our encoding uses variables p1, ..., pn: max(p1,...,Pn)

Existential quantification of the oracle A;: r=Dbin(i) V (a A ).

Complexity

Formula « takes care of the uniformity. (C or L. needed)

a:=max(y)ANy L gr

r encodes names of oracles, g encodes content of oracles, y encodes everything
else.




B C lexity of
Complexity of PL[ L., ~] Proposhions
Inclusion and

Independence

Logic

Jonni Virtema

SAT(PL[Lc, ~]) is AEXPTIME(poly)-complete.

Hardness: Done.

Membership: Guess a possibly exponential-size team T and do APTIME model
checking. [

Complexity




Complexity of PL[ L., ~] Broposiions!
Inclusion and

Independence
Logic

Jonni Virtema

Theorem
SAT(PL[Lc,~]) is AEXPTIME(poly)-complete.

Complexity

Proof.

Hardness: Done.
Membership: Guess a possibly exponential-size team T and do APTIME model
checking. [

Corollary

VAL(PL[Lc,~]) is AEXPTIME(poly)-complete.




Further Complexity Results Complexity of

Propositional

Inclusion and

Independence
Logic

Jonni Virtema

SAT(PL[C, ~]) and VAL(PL[C, ~]) are AEXPTIME(poly)-complete.

Complexity




Complexity of
Propositional

Further Complexity Results
Inclusion and
Independence

Logic

Jonni Virtema

Theorem Complexity

SAT(PL[C, ~]) and VAL(PL[C, ~]) are AEXPTIME(poly)-complete.

MC(PL[C, ~]) and MC(PL[ L., ~]) are PSPACE-complete




Complexity of

FU rther CompleX|ty ReSU|tS Propositional

Inclusion and
Theorem

Independence
VAL(PL[C]) is coNP-complete

Logic
Proof.

Hardness: VAL(PL) is coNP-complete.
Membership:

1. PL[C] is union closed.
2. ¢ € PL[C] is valid iff ¢ is valid on singleton teams.

Jonni Virtema

The logics

Expressive Power

Complexity

3. On singleton teams inclusion atoms can be eliminated.
4. Check validity of the PL-translatee.




Complexity Results

Logic SAT VAL MC
PL NP coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
PL[L] NP in coNEXPTIMENP NP
PL[C] EXPTIME® coNP in PO
PL[Lc,~] AEXPTIME(poly) AEXPTIME(poly) PSPACE
AEXPTIME(poly)  AEXPTIME(poly) PSPACE

PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.

Complexity of
Propositional

Inclusion and
Independence
Logic

Jonni Virtema

Complexity




Complexity Results

Thanks!

Logic SAT VAL MC
PL NP0 coNP?© NC;!
PL[dep(")] NP 3 NEXPTIME* NP 2
PL[L] NP in coNEXPTIMENP NP
PL[C] EXPTIME® coNP in PO
PL[Lc,~] AEXPTIME(poly) AEXPTIME(poly) PSPACE
AEXPTIME(poly)  AEXPTIME(poly) PSPACE

PLIC, ~]

9 Cook 1971, Levin 1973, ! Buss 1987, 2 Ebbing, Lohmann 2012,

3 Lohmann, Vollmer 2013, * V. 2014, ° Hella, Kuusisto, Meier, Vollmer 2015,

6 Hella.

Complexity of
Propositional

Inclusion and
Independence
Logic

Jonni Virtema

Complexity




	The logics
	Expressive Power
	Complexity

