Second-order Boolean logic

Results 0000000000 Conclusion 00

On the Complexity of Horn and Krom Fragments of Second-Order Boolean Logic

Jonni Virtema

Leibniz Universität Hannover, Germany virtema@thi.uni-hannover.de

Joint work with Miika Hannula, Juha Kontinen, and Martin Lück

25th of January, 2021

Second-order Boolean logic

Results 0000000000 Conclusion 00

Canonical complete problems

Quantified Boolean formula

$$\varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists p \mid \forall p$$

SAT (Cook, 1971)		QBF (Stockmeyer and Meyer, 1973)	
Input:Boolean formula θ Question:Is θ satisfiable?		Input: Question:	Quantified Boolean formula $\varphi := Q_1 p_1 \dots Q_n p_n \theta$ Is φ true?
Complete for:	NP	Complete for:	,

W.I.o.g. θ in 3CNF

$$\theta = (p_1 \lor p_2 \lor \neg p_3) \land (\neg p_2 \lor \neg p_4 \lor p_5) \land \ldots$$

Complete problems from propositional logic

		QB	${ m F}$ (Stockmeyer and Meyer, 1973)
SAT (Cook, 1971)		Input:	Quantified Boolean formula
Input: Question:	Boolean formula θ Is θ satisfiable?	·	$arphi := orall p_1 \dots orall p_m \exists q_1 \dots \exists q_n heta$ and constraints $ec{c}_1, \dots, ec{c}_n, \ c_i \subseteq c_{i+1}$
Complete for:	for: NP Question	Question:	Is $arphi$ true?
		Complete for:	PSPACE

DQBF	(Peterson, Reif, Azhar, 2001)	
Input:	Dependency Quantified Boolean formula	W.I.o.g. θ in 3CNF
Question:	$\varphi := \forall p_1 \dots \forall p_m \exists q_1 \dots \exists q_n \theta$ and constraints $\vec{c}_1, \dots, \vec{c}_n$ Is φ true?	$\theta = (p_1 \lor p_2 \lor \neg p_3) \land (\neg p_2 \lor \neg p_4 \lor p_5) \land \ldots$
Complete for:	NEXP	

Results 0000000000

Complete problems from propositional logic

$\operatorname{HORNSAT}$ (Dowling, Gallier, 1984)		
Input: Question:	Horn formula θ ls θ satisfiable?	
Complete for:	PTIME	

QHORN (Karpinski, Kleine Büning, Schmitt, CSL 1987)

Input:	Quantified Horn formula $Q_1 p_1 \dots Q_n p_n \theta$
Question:	Is φ true?

Complete for: PTIME

DQHORN (Bubeck, Kleine Büning, 2006)		
Input:	Dependency Quantified Horn formula	heta in Horn form
Question:	$arphi := \forall p_1 \dots \forall p_m \exists q_1 \dots \exists q_n \theta$ and constraints $\vec{c}_1, \dots, \vec{c}_n$ Is φ true?	$\theta = (p_1 \wedge p_2 \rightarrow p_3) \wedge (p_2 \wedge p_4 \wedge p_7 \rightarrow p_5) \wedge \dots$
Complete for:	?	

Results 0000000000

Complete problems from propositional logic

$\operatorname{HORNSAT}$ (Dowling, Gallier, 1984)			
Input: Question:	Horn formula θ is θ satisfiable?		
Complete for:	PTIME		

QHORN (Karpinski, Kleine Büning, Schmitt, CSL 1987)

Input:	Quantified Horn formula $Q_1p_1 \dots Q_np_n \theta$
Question:	Is $arphi$ true?

Complete for: PTIME

DQHORN (Bubeck, Kleine Büning, 2006)		
Input:	Dependency Quantified Horn formula	θ in Horn form
Question:	$arphi := \forall p_1 \dots \forall p_m \exists q_1 \dots \exists q_n \theta$ and constraints $\vec{c}_1, \dots, \vec{c}_n$ Is φ true?	$ heta = (p_1 \wedge p_2 o p_3) \wedge (p_2 \wedge p_4 \wedge p_7 o p_5) \wedge \dots$
Complete for:	PTIME	3/25

Complete problems from propositional logic

$\operatorname{HORNSAT}$ (Dowling, Gallier, 1984)		m QHORN (Karp	QHORN (Karpinski, Kleine Büning, Schmitt, CSL 1987)	
Input:	Existential first-order Boolean Horn formula	Input:	Quantified Horn formula $Q_1p_1\ldots Q_np_n heta$	
Question:	$arphi := \exists x_1 \dots \exists x_n heta$ Is $arphi$ true?	Question:	ls φ true?	
Complete for:	PTIME	Complete for:	PTIME	

DQHORN (Bubeck, Kleine Büning, 2006)		
Input:	Existential second-order Horn formula $\varphi := \exists f_1 \dots \exists f_n \forall p_1 \dots \forall p_m \theta$	$ heta$ in Horn form $ heta = (p_1 \wedge p_2 o p_3) \wedge (p_2 \wedge p_4 \wedge p_7 o p_5) \wedge \dots$
Question:	Is φ true?	
Complete for:	PTIME	

25

Complete problems from propositional logic

$\operatorname{HORNSAT}$ (Dowling, Gallier, 1984)		QHORN (Karpinski, Kleine Büning, Schmitt, CSL 1987)	
Input:	Existential first-order Boolean Horn formula $\varphi := \exists x_1 \dots \exists x_n \theta$	Input:	Quantified Horn formula $Q_1p_1\ldots Q_np_n heta$
Question:	Is φ true?	Question:	Is $arphi$ true?
Complete for:	PTIME	Complete for:	PTIME
DQHORN (Bubeck, Kleine Büning, 2006)		heta in Horn form	
Input:	Existential second-order Horn formula $\varphi := \exists f_1 \dots \exists f_n \forall p_1 \dots \forall p_m \theta$	$\theta = (p_1 \land p_2 \to p_3) \land (p_2 \land p_4 \land p_7 \to p_5) \land$ $More \text{ expressive second-order quantification?}$	
Question:	Is φ true?		
Complete for:	PTIME		

Conclusion 00

Problem setting

Start with a CNF formula φ .

(1) Restrict structure (from CNF to Horn)

 $\implies \mathsf{reduce\ complexity:}\ \{\mathsf{NP},\mathsf{PSPACE},\mathsf{NEXPTIME}\} \Rightarrow \mathrm{PTIME}$

(2) Add quantification (from existential first-order to existential second-order)

- \implies increase complexity (CNF): NP \Rightarrow NEXPTIME
- \implies no increase complexity (HORN): PTIME \Rightarrow PTIME

Conclusion 00

```
Problem setting
```

Start with a CNF formula φ .

(1) Restrict structure (from CNF to ____?)
⇒ reduce complexity: ?

(2) Add quantification (from existential first-order to _____?) ⇒ increase complexity ?

Conclusion 00

Problem setting

Start with a CNF formula φ .

(1) Restrict structure (from CNF to _____?)
⇒ reduce complexity: ?

(2) Add quantification (from existential first-order to _____?)
 ⇒ increase complexity ?

Metalevel problem:

Computational complexity of Boolean formula φ with

- complex (second-order) quantification
- simple quantifier-free structure

Second-order Boolean logic – Syntax

- functions f of arity 0 are propositional; otherwise proper function variables
- terms consist of:
 - propositional variables *f*,
 - expressions $f(t_1, \ldots, t_n)$, where f is a proper function variable and t_i are terms

Definition (Second-order Boolean logic)

Second-order Boolean logic (SO₂) consists of formulae:

$$\varphi ::= t \mid \neg \varphi \mid (\varphi \land \varphi) \mid \exists f \varphi,$$

where *t* is a term.

Second-order Boolean logic

Results 0000000000 Conclusion 00

Second-order Boolean logic – Semantics

- Interpretation I maps every variable f to I(f): $\{0,1\}^{\operatorname{ar}(f)} \to \{0,1\}$
- Valuation $\llbracket \varphi \rrbracket_I \in \{0,1\}$ of a formula φ defined as:

$$\begin{split} & \llbracket \varphi \land \psi \rrbracket_{I} & := \llbracket \varphi \rrbracket_{I} \cdot \llbracket \psi \rrbracket_{I}, \\ & \llbracket \neg \varphi \rrbracket_{I} & := 1 - \llbracket \varphi \rrbracket_{I}, \\ & \llbracket f(\varphi_{1}, \dots, \varphi_{n}) \rrbracket_{I} := I(f)(\llbracket \varphi_{1} \rrbracket_{I}, \dots, \llbracket \varphi_{n} \rrbracket_{I}), \\ & \llbracket \exists f \varphi \rrbracket_{I} & := \max\{ \llbracket \varphi \rrbracket_{I_{F}^{f}} | F : \{0, 1\}^{n} \to \{0, 1\} \}, \end{split}$$

where I_F^f obtained from *I* by replacing I(f) with *F*.

Second-order Boolean logic

Results 0000000000 Conclusion 00

Second-order Boolean logic - Complexity I

Truth problemInput:Closed SO2-formula φ Question:Is φ true?

Theorem (Lohrey 2012)

Truth of SO_2 -formulae is complete for alternating exponential time with polynomially many alternations (AEXP(poly))

Second-order Boolean logic

Results 0000000000 Conclusion 00

DQHORN as a fragment of SO₂

DQHORN instance:

 $\forall p_1 \dots \forall p_m \exists q_1 \dots \exists q_n \theta \text{ and constraints } \vec{c_i} \subseteq \{p_1, \dots, p_m\}^1$ $\equiv \exists f_1 \dots \exists f_n \forall p_1 \dots \forall p_m \theta(f_1(\vec{c_1})/q_1, \dots, f_n(\vec{c_n})/q_n) \in \mathsf{SO}_2$

Observations:

1) No (second-order) quantifier alternation

2) Simple clause structure (Horn)

- 3) Simple term structure
 - no nested function terms
 - unique function arguments

 ${}^{1}q_{i}$ may depend only on \vec{c}_{i}

Second-order Boolean logic

Results 0000000000 Conclusion 00

DQHORN as a fragment of SO_2

DQHORN instance:

 $\forall p_1 \dots \forall p_m \exists q_1 \dots \exists q_n \theta$ and constraints $\vec{c_i} \subseteq \{p_1, \dots, p_m\}^1$

 $\equiv \exists f_1 \dots \exists f_n \forall p_1 \dots \forall p_m \theta(f_1(\vec{c}_1)/q_1, \dots, f_n(\vec{c}_n)/q_n) \in \mathsf{SO}_2$

Observations:

- $1) \ \ {\rm No} \ ({\rm second-order}) \ {\rm quantifier} \ {\rm alternation}$
- 2) Simple clause structure (Horn)
- 3) Simple term structure
 - no nested function terms
 - unique function arguments

Second-order Boolean logic

Results 0000000000 Conclusion 00

1) Second-order quantifier alternation

Definition

 Σ_k consists of all SO₂ formulae of the form

 $Q_1\vec{f_1}\cdots Q_k\vec{f_k}\ Q_{k+1}\vec{x}\ \theta,$

where $Q_i \equiv \exists (Q_i = \forall)$ if *i* is odd (even), θ is quantifier-free, and \vec{x} is a tuple of propositional variables. For \prod_k swap \exists and \forall .

Theorem ([Lohrey, 2012])

Truth of Σ_k -formulae is complete for Σ_k^{E} , and truth of Π_k -formulae is complete for Π_k^{E} .

Levels of the exponential time hierarchy: $\Sigma_k^{\mathsf{E}} := \mathsf{NEXP}^{\Sigma_{k-1}^{\mathsf{P}}}$ and $\Pi_k^{\mathsf{E}} := \mathsf{coNEXP}^{\Sigma_{k-1}^{\mathsf{P}}}$

Second-order Boolean logic

Results 0000000000 Conclusion 00

2) Clause structure

HOB	RNSAT	QHORN			
Input:	Horn formula θ	Input: Question:		Quantified Horn formula $\varphi := Q_1 x_1 \dots Q_n x_n \theta$	
Question:	Is θ satisfiable?			$\varphi := \varphi_1 \wedge_1 \dots \otimes_n \wedge_n \varphi$ Is φ true?	
Complete for:	PTIME	Complet	e for:	ΡΤΙΜΕ	
	DQHORN				
Input:	Quantified Horn formula $\varphi := \forall p_1 \dots \forall p_m \exists q_1 \dots$		heta in	Horn form	
Question:	and constraints $C_1, \ldots,$ ls φ true?		$\theta = 0$	$(p_1 \wedge p_2 ightarrow p_3) \wedge (p_2 \wedge p_4 \wedge p_7 ightarrow p_5)$,	
Complete for:	PTIME				

10/25

Second-order Boolean logic

Results 0000000000 Conclusion 00

25

2) Clause structure

2SAT (Jones et al. 76, Immerman 88, Szelepcsényi 88)					
Input:	Krom formula θ				
Question:	Is $ heta$ satisfiable?				
Complete for:	NL				

DQKROM						
Input:	Quantified Krom formula					
	$\varphi := \forall p_1 \dots \forall p_m \exists q_1 \dots \exists q_n \theta$					
	and constraints C_1, \ldots, C_n					
Question:	Is $arphi$ true?					
Complete for:	?					

QKROM (Aspvall, Plass, Tarjan, 1979)						
Input:	Quantified Krom formula					
	$\varphi := Q_1 x_1 \dots Q_n x_n \theta$					
Question:	Is φ true?					
Complete for:	NL					

 θ in Krom (2CNF) form

 $\theta = (p_1 \vee \neg p_3) \wedge (\neg p_3 \vee \neg p_4) \wedge \ldots$

Second-order Boolean logic

Results 0000000000 Conclusion 00

2) Clause structure

CNF formula $(C_1 \land \ldots \land C_n) \in SO_2$ called

- a) Horn if each clause C_i contains at most one positive literal. $\neg p \lor \neg f(g(q)) \lor f(p,q)$ or written as an implication $p \land f(g(q)) \rightarrow f(p,q)$
- b) Krom if each clause C_i contains at most two literals. $\neg f(p) \lor \neg g(p,q)$
- c) core if it is both Horn and Krom. $\neg f(p,q,r) \lor g(h(p))$ or written as an implication $f(p,q,r) \to g(h(p))$

Second-order Boolean logic

Results 0000000000 Conclusion 00

25

3) Term structure

Example: In DQHORN quantifier-free part translates to $\theta(f_1(\vec{c_1})/p_i, \dots, f_n(\vec{c_n})/p_n)$

- A formula $\varphi \in SO_2$ is
 - a) unique: $f(t_1, ..., t_n)$ and $f(t'_1, ..., t'_n)$ occur in φ $\implies t_i = t'_i$ for all $i \in [n]$.
 - b) simple: $f(t_1, ..., t_n)$ occurs in φ $\implies t_i$ are propositional variables.

Second-order Boolean logic

Results 0000000000 Conclusion 00

Fragments of SO_2 – Examples

formula	fragment	Horn	Krom	core	unique	simple
$\exists fg \forall pqr \Big(\neg f(q) \lor p \lor \neg g(p,q) \Big) \land \Big(f(q) \lor \neg f(r) \Big)$	Σ_1	\checkmark				\checkmark
$\exists f \forall g \exists pq \Big(f(g(p)) \lor p \Big) \land \Big(\neg q \lor \neg f(g(p)) \Big)$	Σ ₂		\checkmark		\checkmark	
$orall f \exists gh orall pq \Big(f(p) \lor \neg g(q) \Big) \land \Big(\neg h(p,q) \lor \neg f(p) \Big)$	Π2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Second-order Boolean logic

Results 0000000000 Conclusion 00

Fragments of SO_2 – Examples

formula	fragment	Horn	Krom	core	unique	simple
$\exists fg \forall pqr \Big(\neg f(q) \lor p \lor \neg g(p,q) \Big) \land \Big(f(q) \lor \neg f(r) \Big)$	Σ_1	\checkmark				\checkmark
$\exists f \forall g \exists pq \Big(f(g(p)) \lor p \Big) \land \Big(\neg q \lor \neg f(g(p)) \Big)$	Σ_2		\checkmark		\checkmark	
$orall f \exists gh orall pq \Big(f(p) \lor \neg g(q) \Big) \land \Big(\neg h(p,q) \lor \neg f(p) \Big)$	Π2	\checkmark	\checkmark	~	\checkmark	\checkmark
DQHORN	Σ_1	\checkmark			\checkmark	\checkmark

Results •000000000

25

Summary

Simpleness	Uniqueness	k	Clauses	Σ_k	Π_k	Reference
Simple U	Unique	k = 1	Horn	Р		[Bubeck and Kleine Büning, 2006]
			Krom/core			
		<i>k</i> = 2	Horn Krom/core			
		$k \ge 3 \text{ odd}$	*			
		$k \ge 4$ even	*			
	Non-unique	k = 1	Horn			
			Krom/core			
		$k \ge 3 \text{ odd}$	*			
		$k \ge 2$ even	*			
Non-simple	Unique	k = 1	Horn			
			Krom/core			
		$k \ge 2$	*			
	Non-unique	$k \ge 1$	*			
*	*	$k = \omega$	*	AEXP(poly)	AEXP(poly)	H: t, [Hannula et al., 2016], ∈: [Lohrey, 2012]

*: "any", "H": hardness, " \in ": membership, "t": this paper, †: likely identical with first row. ‡: follows from some other result in the table. 14/

Second-order Boolean logic

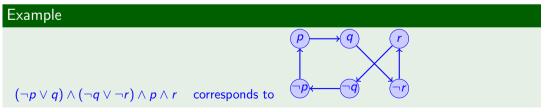
Results 00000000 Conclusion 00

Unique and simple Krom Σ_1 I

Definition (Implication graph)

A quantifier-free Krom formula θ gives rise to *implication graph* G = (V, E), where

- V contains all literals I in φ (closed under \neg , $\neg \neg I$ identified with I)
- *E* contains an edge $l_1 \rightarrow l_2$ for each clause $\neg l_1 \lor l_2$ in φ , and an edge $\neg l \rightarrow l$ for each unit clause *l* in φ .



Second-order Boolean logic

Results 00000000 Conclusion 00

25

Unique and simple Krom Σ_1 II

SAT over Krom (2CNF) formulae is true iff the following conditions all hold [Aspvall et al., 1979]:

(1) No vertices v and $\neg v$ are in the same scc.

scc: strongly connected component

Second-order Boolean logic

Results 00000000 Conclusion 00

Unique and simple Krom Σ_1 III

QBF over Krom (2CNF) formulae is true iff the following conditions all hold [Aspvall et al., 1979]:

- (1) There is no path from a universal vertex u to another universal vertex u' (with $u \neq u'$, but possibly $u = \neg u'$).
- (2) No vertices v and $\neg v$ are in the same scc.
- (3) Every existential vertex v in the same scc as a universal vertex u must depend on u.

scc: strongly connected component

Unique and simple Krom Σ_1 IV

We show that unique and simple Σ_1 over Krom (2CNF) formulae is true iff the following conditions all hold:

- (1) There is no path from a universal vertex u to another universal vertex u' (with $u \neq u'$, but possibly $u = \neg u'$).
- (2) No vertices v and $\neg v$ are in the same scc.
- (3) Every existential vertex v in the same scc as a universal vertex u must depend on u.
- (4) There is no \rightarrow -cycle among the scc's (including loops).

v depends on v', written $v \rightsquigarrow v'$, if e.g. v' is an argument of v.

If S and S' are scc's, then $S \rightsquigarrow S'$ if some *universal* vertex $u \in S$ depends on some vertex $v \in S'$ (with possibly S = S')

Second-order Boolean logic

Results 00000000 Conclusion 00

Unique and simple Krom Σ_1 V

We show that unique and simple Σ_1 over Krom (2CNF) formulae is true iff the following conditions all hold:

- (1) There is no path from a universal vertex u to another universal vertex u' (with $u \neq u'$, but possibly $u = \neg u'$).
- (2) No vertices v and $\neg v$ are in the same scc.
- (3) Every existential vertex v in the same scc as a universal vertex u must depend on u.
- (4) There is no \rightsquigarrow -cycle among the scc's (including loops).

Theorem

Truth of unique and simple Krom Σ_1 is NL-complete.

Unique and simple Krom Σ_1 VI

We show that unique and simple Σ_1 over Krom (2CNF) formulae is true iff the following conditions all hold:

- (1) There is no path from a universal vertex u to another universal vertex u' (with $u \neq u'$, but possibly $u = \neg u'$).
- (2) No vertices v and $\neg v$ are in the same scc.
- (3) Every existential vertex v in the same scc as a universal vertex u must depend on u.
- (4) There is no \rightsquigarrow -cycle among the scc's (including loops).

Example

 $\forall f_1 \forall f_2 \exists x_1 \exists x_2(f_1(x_2) \leftrightarrow x_1) \land (f_2(x_1) \leftrightarrow x_2) \text{ violates (4). Here } f_1(x_2) \rightsquigarrow x_2 \text{ and } f_2(x_1) \rightsquigarrow x_1, \text{ and therefore } \{f_1(x_2), x_1\} \rightsquigarrow \{x_2, f_2(x_1)\} \rightsquigarrow \{f_1(x_2), x_1\} \text{ on the level of components.}$ Indeed, choosing the universal quantifiers as $f_1(x_2) = \neg x_2, f_2(x_1) = x_1$ refutes the formula.

Results 000000000000

Summary

Simpleness	Uniqueness	k	Clauses	Σ_k	Π_k	Reference
Simple	Unique	k = 1	Horn	Р		[Bubeck and Kleine Büning, 2006]
			Krom/core	NL	NL	H/∈: t H/∈: t
		<i>k</i> = 2	Horn Krom/core		NL	H/∈: t
		$k \ge 3 \text{ odd}$	*			
		$k \ge 4$ even	*			
N	Non-unique	k = 1	Horn			
			Krom/core			
		$k \ge 3 \text{ odd}$	*			
		$k \ge 2$ even	*			
Non-simple	Unique	k = 1	Horn			
			Krom/core		NL	H/∈: t
		$k \ge 2$	*			
	Non-unique	$k \ge 1$	*			
*	*	$k = \omega$	*	AEXP(poly)	AEXP(poly)	H: t, [Hannula et al., 2016], ∈: [Lohrey, 2012]

*: "any", "H": hardness, " \in ": membership, "t": this paper, †: likely identical with first row. ‡: follows from some other result in the table.

Second-order Boolean logic

Results 000000000 Conclusion 00

Without uniqueness/simpleness

Theorem

Truth of unique Horn/Krom/core Σ_k is Σ_k^{E} -complete.

Theorem

Truth of simple Krom/core Σ_1 is PSPACE-complete. Truth of simple Horn Σ_1 is EXP-complete.

Otherwise, simple Krom/core/Horn Σ_k and Π_k correspond to levels of the exponential time hierarchy.

Results 000000000

25

Summary

Simpleness	Uniqueness	k	Clauses	Σ_k	Π_k	Reference
Simple	Unique	k = 1	Horn	Р	?	[Bubeck and Kleine Büning, 2006]
			Krom/core	NL	NL	H/∈: t H/∈: t
		<i>k</i> = 2	Horn	Σ_2^E	?	H/∈: ‡
			Krom/core	Σ_2^E	NL	$H: t, \in: \ddagger H/\in: t$
		$k \ge 3 \text{ odd}$	*	Σ_{k-1}^{E}	Π_k^{E}	H: t ∈: ‡ H: t ∈: ‡
		$k \ge 4$ even	*	Σ_k^{E}	$\Pi_{k=1}^{E}$	H: t ∈: ‡ H: t ∈: ‡
	Non-unique	k = 1	Horn	EXP	Π ^E	H/∈: t H/∈: ‡
			Krom/core	PSPACE	Π ^E	H/∈: t H: t, ∈: ‡
		$k \ge 3 \text{ odd}$	*	Σ_{k-1}^{E}	Π_k^{E}	H : \ddagger , \in : t H/\in : \ddagger
		$k \ge 2$ even	*	Σ_k^{E}	$\Pi_{k=1}^{E}$	$H/\in: \ddagger$ $H: \ddagger, \in: t$
Non-simple	Unique	k = 1	Horn	Σ_1^{E}	?†	H/∈: ‡
			Krom/core	Σ_1^{E}	NL	$H: t, \in: \ddagger H/\in: t$
		$k \ge 2$	*	Σ_k^{E}	Π_k^E	H: t, ∈: ‡
	Non-unique	$k \ge 1$	*	Σ_k^{E}	Π_k^E	H: t, ∈: [Lohrey, 2012]
*	*	$\mathbf{k} = \omega$	*	AEXP(poly)	AEXP(poly)	H: t, [Hannula et al., 2016], ∈: [Lohrey, 2012

*: "any", "H": hardness, " \in ": membership, "t": this paper, †: likely identical with first row. ‡: follows from some other result in the table. 23

Conclusion • O

Conclusion

 $\label{eq:Background: SAT, QBF, DQBF} \mbox{ increasingly intractable, while HORNSAT, QHORN, DQHORN all P-complete.}$

This paper: Isolated DQHORN as a special fragment of SO_2 :

- (1) unique and simple function terms
- (2) Horn clauses
- (3) in Σ_1

Can (1)-(3) be relaxed without increasing complexity? Answer: No (one exception: replace Horn with Krom/core)

Open question: Complexity of simple unique Π_1 (dual of DQHORN)?

Second-order Boolean logic

Results 0000000000

Thanks!

Aspvall, B., Plass, M. F., and Tarjan, R. E. (1979). A linear-time algorithm for testing the truth of certain guantified boolean formulas. Inf. Process. Lett., 8(3):121-123. Bubeck, U. and Kleine Büning, H. (2006). Dependency quantified horn formulas: Models and complexity. In SAT, volume 4121 of Lecture Notes in Computer Science, pages 198-211. Springer. Hannula, M., Kontinen, J., Lück, M., and Virtema, J. (2016). On quantified propositional logics and the exponential time hierarchy. In Cantone, D. and Delzanno, G., editors, Proceedings of the Seventh International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September 2016, volume 226 of EPTCS. pages 198-212. Lohrev. M. (2012).

Model-checking hierarchical structures.

J. Comput. Syst. Sci., 78(2):461-490.