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Canonical complete problems

Quantified Boolean formula

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∃p | ∀p

SAT (Cook, 1971)

Input: Boolean formula θ
Question: Is θ satisfiable?

Complete for: NP

QBF (Stockmeyer and Meyer, 1973)

Input: Quantified Boolean formula
ϕ := Q1p1 . . .Qnpnθ

Question: Is ϕ true?

Complete for: PSPACE

W.l.o.g. θ in 3CNF

θ = (p1 ∨ p2 ∨ ¬p3) ∧ (¬p2 ∨ ¬p4 ∨ p5) ∧ . . .
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Complete problems from propositional logic

SAT (Cook, 1971)

Input: Boolean formula θ
Question: Is θ satisfiable?

Complete for: NP

QBF (Stockmeyer and Meyer, 1973)

Input: Quantified Boolean formula
ϕ := ∀p1 . . . ∀pm∃q1 . . . ∃qnθ
and constraints ~c1, . . . , ~cn, ci ⊆ ci+1

Question: Is ϕ true?

Complete for: PSPACE

DQBF (Peterson, Reif, Azhar, 2001)

Input: Dependency Quantified
Boolean formula
ϕ := ∀p1 . . . ∀pm∃q1 . . . ∃qnθ
and constraints ~c1, . . . , ~cn

Question: Is ϕ true?

Complete for: NEXP

W.l.o.g. θ in 3CNF

θ = (p1 ∨ p2 ∨ ¬p3) ∧ (¬p2 ∨ ¬p4 ∨ p5) ∧ . . .
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Complete problems from propositional logic

HORNSAT (Dowling, Gallier, 1984)

Input: Horn formula θ
Question: Is θ satisfiable?

Complete for: PTIME

QHORN (Karpinski, Kleine Büning, Schmitt, CSL 1987)

Input: Quantified Horn formula
Q1p1 . . .Qnpnθ

Question: Is ϕ true?

Complete for: PTIME

DQHORN (Bubeck, Kleine Büning, 2006)

Input: Dependency Quantified
Horn formula
ϕ := ∀p1 . . . ∀pm∃q1 . . . ∃qnθ
and constraints ~c1, . . . , ~cn

Question: Is ϕ true?

Complete for: ?

θ in Horn form

θ = (p1 ∧ p2 → p3) ∧ (p2 ∧ p4 ∧ p7 → p5) ∧ . . .
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Complete problems from propositional logic

HORNSAT (Dowling, Gallier, 1984)

Input: Existential first-order
Boolean Horn formula
ϕ := ∃x1 . . . ∃xnθ

Question: Is ϕ true?

Complete for: PTIME

QHORN (Karpinski, Kleine Büning, Schmitt, CSL 1987)

Input: Quantified Horn formula
Q1p1 . . .Qnpnθ

Question: Is ϕ true?

Complete for: PTIME

DQHORN (Bubeck, Kleine Büning, 2006)

Input: Existential second-order
Horn formula
ϕ := ∃f1 . . . ∃fn∀p1 . . . ∀pmθ

Question: Is ϕ true?

Complete for: PTIME

θ in Horn form

θ = (p1 ∧ p2 → p3) ∧ (p2 ∧ p4 ∧ p7 → p5) ∧ . . .
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Complete problems from propositional logic

HORNSAT (Dowling, Gallier, 1984)

Input: Existential first-order
Boolean Horn formula
ϕ := ∃x1 . . . ∃xnθ

Question: Is ϕ true?

Complete for: PTIME

QHORN (Karpinski, Kleine Büning, Schmitt, CSL 1987)

Input: Quantified Horn formula
Q1p1 . . .Qnpnθ

Question: Is ϕ true?

Complete for: PTIME

DQHORN (Bubeck, Kleine Büning, 2006)

Input: Existential second-order
Horn formula
ϕ := ∃f1 . . . ∃fn∀p1 . . . ∀pmθ

Question: Is ϕ true?

Complete for: PTIME

θ in Horn form

θ = (p1 ∧ p2 → p3) ∧ (p2 ∧ p4 ∧ p7 → p5) ∧ . . .

More expressive
second-order quantification?
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Problem setting

Start with a CNF formula ϕ.

(1) Restrict structure (from CNF to Horn )
=⇒ reduce complexity: {NP,PSPACE,NEXPTIME} ⇒ PTIME

(2) Add quantification (from existential first-order to existential second-order )
=⇒ increase complexity (CNF): NP⇒ NEXPTIME
=⇒ no increase complexity (HORN): PTIME⇒ PTIME
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Problem setting

Start with a CNF formula ϕ.

(1) Restrict structure (from CNF to ?)
=⇒ reduce complexity: ?
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Problem setting

Start with a CNF formula ϕ.

(1) Restrict structure (from CNF to ?)
=⇒ reduce complexity: ?

(2) Add quantification (from existential first-order to ?)
=⇒ increase complexity ?

Metalevel problem:

Computational complexity of Boolean formula ϕ with

• complex (second-order) quantification

• simple quantifier-free structure
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Second-order Boolean logic – Syntax

• functions f of arity 0 are propositional; otherwise proper function variables

• terms consist of:
• propositional variables f ,
• expressions f (t1, . . . , tn), where f is a proper function variable and ti are terms

Definition (Second-order Boolean logic)

Second-order Boolean logic (SO2) consists of formulae:

ϕ ::= t | ¬ϕ | (ϕ ∧ ϕ) | ∃f ϕ,

where t is a term.
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Second-order Boolean logic – Semantics

• Interpretation I maps every variable f to I (f ) : {0, 1}ar(f ) → {0, 1}

• Valuation JϕKI ∈ {0, 1} of a formula ϕ defined as:

Jϕ ∧ ψKI := JϕKI · JψKI ,
J¬ϕKI := 1− JϕKI ,
Jf (ϕ1, . . . , ϕn)KI := I (f )(Jϕ1KI , . . . , JϕnKI ),

J∃f ϕKI := max{JϕKI fF |F : {0, 1}n → {0, 1}},

where I fF obtained from I by replacing I (f ) with F .
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Second-order Boolean logic – Complexity I

Truth problem

Input: Closed SO2-formula ϕ
Question: Is ϕ true?

Theorem (Lohrey 2012)

Truth of SO2-formulae is complete for alternating exponential time with polynomially
many alternations (AEXP(poly))
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DQHORN as a fragment of SO2

DQHORN instance:

∀p1 . . . ∀pm∃q1 . . . ∃qnθ and constraints ~ci ⊆ {p1, . . . , pm}1

≡ ∃f1 . . . ∃fn∀p1 . . . ∀pmθ(f1(~c1)/q1, . . . , fn(~cn)/qn) ∈ SO2

Observations:

1) No (second-order) quantifier alternation

2) Simple clause structure (Horn)

3) Simple term structure
• no nested function terms
• unique function arguments

1qi may depend only on ~ci
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1) Second-order quantifier alternation

Definition

Σk consists of all SO2 formulae of the form

Q1
~f1 · · · Qk

~fk Qk+1 ~x θ,

where Qi = ∃ (Qi = ∀) if i is odd (even), θ is quantifier-free, and ~x is a tuple of
propositional variables. For Πk swap ∃ and ∀.

Theorem ([Lohrey, 2012])

Truth of Σk -formulae is complete for ΣE
k , and truth of Πk -formulae is complete for ΠE

k .

Levels of the exponential time hierarchy: ΣE
k := NEXPΣP

k−1 and ΠE
k := coNEXPΣP

k−1
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2) Clause structure

HORNSAT

Input: Horn formula θ
Question: Is θ satisfiable?

Complete for: PTIME

QHORN

Input: Quantified Horn formula
ϕ := Q1x1 . . .Qnxnθ

Question: Is ϕ true?

Complete for: PTIME

DQHORN

Input: Quantified Horn formula
ϕ := ∀p1 . . . ∀pm∃q1 . . . ∃qnθ

and constraints C1, . . . ,Cn

Question: Is ϕ true?

Complete for: PTIME

θ in Horn form

θ = (p1 ∧ p2 → p3) ∧ (p2 ∧ p4 ∧ p7 → p5) ∧ . . .



10/ 25

Introduction Second-order Boolean logic Results Conclusion

2) Clause structure

2SAT (Jones et al. 76, Immerman 88, Szelepcsényi 88)

Input: Krom formula θ
Question: Is θ satisfiable?

Complete for: NL

QKROM (Aspvall, Plass, Tarjan, 1979)

Input: Quantified Krom formula
ϕ := Q1x1 . . .Qnxnθ

Question: Is ϕ true?

Complete for: NL

DQKROM

Input: Quantified Krom formula
ϕ := ∀p1 . . . ∀pm∃q1 . . . ∃qnθ

and constraints C1, . . . ,Cn

Question: Is ϕ true?

Complete for: ?

θ in Krom (2CNF) form

θ = (p1 ∨ ¬p3) ∧ (¬p3 ∨ ¬p4) ∧ . . .
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2) Clause structure

CNF formula (C1 ∧ . . . ∧ Cn) ∈ SO2 called

a) Horn if each clause Ci contains at most one positive literal.
¬p ∨ ¬f (g(q)) ∨ f (p, q) or written as an implication p ∧ f (g(q))→ f (p, q)

b) Krom if each clause Ci contains at most two literals.
¬f (p) ∨ ¬g(p, q)

c) core if it is both Horn and Krom.
¬f (p, q, r) ∨ g(h(p)) or written as an implication f (p, q, r)→ g(h(p))
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3) Term structure

Example:
In DQHORN quantifier-free part translates to θ(f1(~c1)/pi , . . . , fn(~cn)/pn)

A formula ϕ ∈ SO2 is

a) unique: f (t1, . . . , tn) and f (t ′1, . . . , t
′
n) occur in ϕ

=⇒ ti = t ′i for all i ∈ [n].

b) simple: f (t1, . . . , tn) occurs in ϕ
=⇒ ti are propositional variables.
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Fragments of SO2 – Examples

formula fragment Horn Krom core unique simple

∃fg∀pqr
(
¬f (q) ∨ p ∨ ¬g(p, q)

)
∧
(
f (q) ∨ ¬f (r)

)
Σ1

∃f ∀g∃pq
(
f (g(p)) ∨ p

)
∧
(
¬q ∨ ¬f (g(p))

)
Σ2

∀f ∃gh∀pq
(
f (p) ∨ ¬g(q)

)
∧
(
¬h(p, q) ∨ ¬f (p)

)
Π2

DQHORN Σ1
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Summary

Simpleness Uniqueness k Clauses Σk Πk Reference

Simple Unique k = 1 Horn P [Bubeck and Kleine Büning, 2006]

Krom/core

k = 2 Horn
Krom/core

k ≥ 3 odd ?

k ≥ 4 even ?

Non-unique k = 1 Horn

Krom/core

k ≥ 3 odd ?

k ≥ 2 even ?

Non-simple Unique k = 1 Horn

Krom/core

k ≥ 2 ?

Non-unique k ≥ 1 ?

? ? k = ω ? AEXP(poly) AEXP(poly) H: t, [Hannula et al., 2016], ∈: [Lohrey, 2012]

?: ”any”, ”H”: hardness, ”∈”: membership, ”t”: this paper, †: likely identical with first row. ‡: follows from
some other result in the table.
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Unique and simple Krom Σ1 I

Definition (Implication graph)

A quantifier-free Krom formula θ gives rise to implication graph G = (V ,E ), where

• V contains all literals l in ϕ (closed under ¬, ¬¬l identified with l)

• E contains an edge l1 → l2 for each clause ¬l1 ∨ l2 in ϕ, and an edge ¬l → l for each unit
clause l in ϕ.

Example

(¬p ∨ q) ∧ (¬q ∨ ¬r) ∧ p ∧ r corresponds to

p

¬p

q

¬q

r

¬r
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Unique and simple Krom Σ1 II

SAT over Krom (2CNF) formulae is true iff the following conditions all
hold [Aspvall et al., 1979]:

(1) No vertices v and ¬v are in the same scc.

scc: strongly connected component
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Unique and simple Krom Σ1 III

QBF over Krom (2CNF) formulae is true iff the following conditions all
hold [Aspvall et al., 1979]:

(1) There is no path from a universal vertex u to another universal vertex u′ (with u 6= u′,
but possibly u = ¬u′).

(2) No vertices v and ¬v are in the same scc.

(3) Every existential vertex v in the same scc as a universal vertex u must depend on u.

scc: strongly connected component
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Unique and simple Krom Σ1 IV

We show that unique and simple Σ1 over Krom (2CNF) formulae is true iff the following
conditions all hold:

(1) There is no path from a universal vertex u to another universal vertex u′ (with u 6= u′,
but possibly u = ¬u′).

(2) No vertices v and ¬v are in the same scc.

(3) Every existential vertex v in the same scc as a universal vertex u must depend on u.

(4) There is no  -cycle among the scc’s (including loops).

v depends on v ′, written v  v ′, if e.g. v ′ is an argument of v .

If S and S ′ are scc’s, then S  S ′ if some universal vertex u ∈ S depends on some vertex
v ∈ S ′ (with possibly S = S ′)
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Unique and simple Krom Σ1 V

We show that unique and simple Σ1 over Krom (2CNF) formulae is true iff the following
conditions all hold:

(1) There is no path from a universal vertex u to another universal vertex u′ (with u 6= u′,
but possibly u = ¬u′).

(2) No vertices v and ¬v are in the same scc.

(3) Every existential vertex v in the same scc as a universal vertex u must depend on u.

(4) There is no  -cycle among the scc’s (including loops).

Theorem

Truth of unique and simple Krom Σ1 is NL-complete.
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Unique and simple Krom Σ1 VI

We show that unique and simple Σ1 over Krom (2CNF) formulae is true iff the following
conditions all hold:

(1) There is no path from a universal vertex u to another universal vertex u′ (with u 6= u′,
but possibly u = ¬u′).

(2) No vertices v and ¬v are in the same scc.

(3) Every existential vertex v in the same scc as a universal vertex u must depend on u.

(4) There is no  -cycle among the scc’s (including loops).

Example

∀f1∀f2∃x1∃x2(f1(x2)↔ x1) ∧ (f2(x1)↔ x2) violates (4). Here f1(x2) x2 and f2(x1) x1, and
therefore {f1(x2), x1} {x2, f2(x1)} {f1(x2), x1} on the level of components.
Indeed, choosing the universal quantifiers as f1(x2) = ¬x2, f2(x1) = x1 refutes the formula.



21/ 25

Introduction Second-order Boolean logic Results Conclusion

Summary

Simpleness Uniqueness k Clauses Σk Πk Reference

Simple Unique k = 1 Horn P [Bubeck and Kleine Büning, 2006]

Krom/core NL NL H/∈: t H/∈: t

k = 2 Horn
Krom/core NL H/∈: t

k ≥ 3 odd ?

k ≥ 4 even ?

Non-unique k = 1 Horn

Krom/core

k ≥ 3 odd ?

k ≥ 2 even ?

Non-simple Unique k = 1 Horn

Krom/core NL H/∈: t

k ≥ 2 ?

Non-unique k ≥ 1 ?

? ? k = ω ? AEXP(poly) AEXP(poly) H: t, [Hannula et al., 2016], ∈: [Lohrey, 2012]

?: ”any”, ”H”: hardness, ”∈”: membership, ”t”: this paper, †: likely identical with first row. ‡: follows from
some other result in the table.
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Without uniqueness/simpleness

Theorem

Truth of unique Horn/Krom/core Σk is ΣE
k -complete.

Theorem

Truth of simple Krom/core Σ1 is PSPACE-complete.
Truth of simple Horn Σ1 is EXP-complete.

Otherwise, simple Krom/core/Horn Σk and Πk correspond to levels of the exponential
time hierarchy.
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Summary

Simpleness Uniqueness k Clauses Σk Πk Reference

Simple Unique k = 1 Horn P ? [Bubeck and Kleine Büning, 2006]

Krom/core NL NL H/∈: t H/∈: t

k = 2 Horn ΣE
2 ? H/∈: ‡

Krom/core ΣE
2 NL H: t, ∈: ‡ H/∈: t

k ≥ 3 odd ? ΣE
k−1 ΠE

k H: t ∈: ‡ H: t ∈: ‡

k ≥ 4 even ? ΣE
k ΠE

k−1 H: t ∈: ‡ H: t ∈: ‡

Non-unique k = 1 Horn EXP ΠE
1 H/∈: t H/∈: ‡

Krom/core PSPACE ΠE
1 H/∈: t H: t, ∈: ‡

k ≥ 3 odd ? ΣE
k−1 ΠE

k H: ‡ , ∈: t H/∈: ‡

k ≥ 2 even ? ΣE
k ΠE

k−1 H/∈: ‡ H: ‡, ∈: t

Non-simple Unique k = 1 Horn ΣE
1 ?† H/∈: ‡

Krom/core ΣE
1 NL H: t, ∈: ‡ H/∈: t

k ≥ 2 ? ΣE
k ΠE

k H: t, ∈: ‡

Non-unique k ≥ 1 ? ΣE
k ΠE

k H: t, ∈: [Lohrey, 2012]

? ? k = ω ? AEXP(poly) AEXP(poly) H: t, [Hannula et al., 2016], ∈: [Lohrey, 2012]

?: ”any”, ”H”: hardness, ”∈”: membership, ”t”: this paper, †: likely identical with first row. ‡: follows from
some other result in the table.
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Conclusion

Background: SAT,QBF,DQBF increasingly intractable, while
HORNSAT,QHORN,DQHORN all P-complete.

This paper: Isolated DQHORN as a special fragment of SO2:

(1) unique and simple function terms
(2) Horn clauses
(3) in Σ1

Can (1)-(3) be relaxed without increasing complexity?
Answer: No (one exception: replace Horn with Krom/core)

Open question: Complexity of simple unique Π1 (dual of DQHORN)?
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