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Descriptive Complexity

I Offers a machine independent description of complexity classes:
I Time/Space used by a machine to decide a problem
⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.
I Many characterisations are known:

I Fagin’s Theorem 1973: Existential second-order logic characterises NP.
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Descriptive Complexity

I Offers a machine independent description of complexity classes:
I Time/Space used by a machine to decide a problem
⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.
I Many characterisations are known:

I Fagin’s Theorem 1973: Existential second-order logic characterises NP.

”A graph is three colourable” =

∃R∃B∃G
(
”each node is labeled by exactly one colour”

∧ ”adjacent nodes are always coloured with distinct colours”
)
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Descriptive Complexity

I Offers a machine independent description of complexity classes:
I Time/Space used by a machine to decide a problem
⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.
I Many characterisations are known:

I Fagin’s Theorem 1973: Existential second-order logic characterises NP.
I Least fixed point logic LFP characterises P on ordered structures.
I First-order transitive closure logic characterises NLOGSPACE on ordered

structures.
I Second-order logic characterises the polynomial time hierarchy.
I Second-order transitive closure logic characterises PSPACE.
I ...
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Second-order transitive closure logic SO(TC)

I Expressive declarative language – can express exactly all PSPACE properties.
I Can express step-wise defined properties in a natural and elegant manner.

I Recursive properties of graphs: Determine whether a graph G can be built
starting from some graph pattern Gp by some recursive procedure.

I Already the monadic fragment MSO(TC) can express many interesting
properties:

I On strings it characterises nondeterministic linear space.
I Can express NP-complete problems (e.g., QBF).
I Can express counting.
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Transitive closure

The transitive closure TC(R) of a binary relation R ⊆ A×A is defined as follows

TC(R) :={(a, b) ∈ A× A | there exists a finite directed R-path from a to b}.

In our setting A is set of tuples (a1, . . . an), where each ai is either an element or
a relation over some domain D.
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Transitive closure

Example

Let G = (V ,E ) be an undirected graph. Then (a, b) ∈ TC(E ) if a and b are in
the same component of G , or equivalently, if there is a path from a to b in G .

Example

A graph G = (V ,E ) has a Hamiltonian cycle (cycle that visits every node
exactly once) if the following holds:

1. There is a relation R such that

(Z , z ,Z ′, z ′) ∈ R iff Z ′ = Z ∪ {z ′}, z ′ /∈ Z and (z , z ′) ∈ E .

2. The tuple ({x}, x ,V , y) is in the transitive closure of R, for some x , y ∈ V
such that (y , x) ∈ E .
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Definable relations

Let ~x and ~y be k-tuples of first-order variables, ϕ(~x , ~y) an FO-formula, and A a
model.

I ϕ(~x , ~y) defines a 2k-ary relation on A.

I We consider this 2k-ary relation as a binary relation over k-tuples.

I We denote by BIN
(
ϕ(~x , ~y)

)
this binary relation.
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Logics with transitive closure operator

First-order transitive closure logic FO(TC):

ϕ ::= x = y | X (x1, . . . , xk) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | [TC
~x ,~x ′

ϕ](~y , ~y ′),

where ~x , ~x ′,~y , and ~y ′ are tuples of first-order variables of the same length.

Semantics for the TC operator:

A |=s [TC
~x ,~x ′

ϕ](~y , ~y ′) iff
(
s(~y), s(~y ′)

)
∈ TC

(
BIN

(
ϕ(~x , ~x ′)

))

Example

The sentence
∀x∀y x = y ∨ [TCz,z ′E (z , z ′)](x , y)

expresses connectivity of graphs (V ,E ).
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Logics with transitive closure operator

Second-order transitive closure logic SO(TC):

ϕ ::= x = y | X (x1, . . . , xk) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Yϕ | [TC~X , ~X ′ϕ]( ~Y , ~Y ′),

where ~X , ~X ′, ~Y , and ~Y ′ are tuples of first-order and second-order variables of the
same length and sort.

Semantics for the TC operator:

A |=s [TC~X , ~X ′ϕ]( ~Y , ~Y ′) iff
(
s( ~Y ), s( ~Y ′)

)
∈ TC

(
BIN

(
ϕ(~X , ~X ′)

))
MSO(TC) is the fragment of SO(TC) in which all second-order variables have
arity 1.
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The Härtig quantifier

A |=s Hxy(ϕ(x), ψ(y))⇔ the sets {a ∈ A | A |=s(x 7→a) ϕ(x)} and

{b ∈ A | A |=s(y 7→b) ψ(y)} have the same cardinality

Example (The Härtig quantifier can be expressed in MSO(TC).)

Let ψdecrement denote an FO-formula expressing that s(X ′) = s(X ) \ {a} and
s(Y ′) = s(Y ) \ {b} for some a ∈ s(X ) and b ∈ s(Y ). Define

ψec := [TCX ,Y ,X ′,Y ′ψdecrement](Z ,Z
′, ∅, ∅).

I Now ψec holds under s iff |s(Z )| = |s(Z ′)|.
I Therefore Hxy(ϕ(x), ψ(y)) is equivalent with the formula

∃Z∃Z ′
(
∀x(ϕ(x)↔ Z (x)) ∧ ∀y(ψ(y)↔ Z ′(y)) ∧ ψec

)
.
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Hamiltonian cycle

Example

A graph G = (V ,E ) has a Hamiltonian cycle if the following holds:

1. There is a relation R such that

(Z , z ,Z ′, z ′) ∈ R iff Z ′ = Z ∪ {z ′}, z ′ /∈ Z and (z , z ′) ∈ E .

2. The tuple ({x}, x ,V , y) is in the transitive closure of R, for some x , y ∈ V
such that (y , x) ∈ E .

In the language of MSO(TC) this can be written as follows:

∃xy
(
E (y , x) ∧ [TCZ ,z,Z ′,z ′ϕ]({x}, x ,V , y)

)
where ϕ := ¬Z (z ′) ∧ ∀x

(
Z ′(x)↔ (Z (x) ∨ z ′ = x)

)
∧ E (z , z ′).
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Descriptive complexity

Theorem (Harel and Peleg 84)

SO(TC) characterises polynomial space PSPACE.

Theorem (Immerman 87)

I On finite ordered structures, first-order transitive-closure logic FO(TC)
characterises nondeterministic logarithmic space NLOGSPACE.

I On strings (word structures), SO(arity k)(TC) captures NSPACE(nk).

In particular, on strings MSO(TC) characterises nondeterministic linear space
NLIN.
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Existential positive SO(2TC)

∃SO(2TC) is the syntactic fragment of SO(TC) in which

1. the existential quantifiers and the TC-operators occur only positively.

2. TC-operators bound only second-order variables.

Rosen noted (1999) that ∃SO collapses to existential first-order logic ∃FO.

Theorem

The expressive powers of ∃SO(2TC) and ∃FO coincide.

Proof.

[TC~X , ~X ′∃x1 . . . ∃xnθ]( ~Y , ~Y ′) and [TC≤k~X , ~X ′∃x1 . . . ∃xnθ]( ~Y , ~Y ′),

where θ is quantifier free FO-formula, are equivalent for large enough k .
(Note that k is independent of the model and depends only on the formula.)
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Corridor tiling problem

The corridor tiling problem is the following PSPACE-complete decision problem
(Chlebus 86):

Input: An instance P = (T ,H,V , ~b, ~t, n), where

I T is a finite collection of tiles,

I H and V are the horizontal and vertical constraints for tiling,

I ~b and ~t are n-tuples of tiles.

Output: Does there exists a tiling of width n having ~b as the bottom row and ~t
as the top row of tiles?
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Complexity of model checking

Theorem

Combined complexity of model checking for monadic 2TC[∀FO] is
PSPACE-complete.

Proof.

Hardness follows from corridor tiling. Input: (T ,H,V , ~b, ~t, n).
Let s be a successor relation on {1, . . . , n} and X1, . . .Xk ,Y1, . . . ,Yk monadic
second-order variables (corresponding to tiles) that are used to encode ~b and ~t.
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Complexity of model checking

Theorem

Combined complexity of model checking for monadic 2TC[∀FO] is
PSPACE-complete.

Proof.

Hardness follows from corridor tiling. Input: (T ,H,V , ~b, ~t, n).
Let s be a successor relation on {1, . . . , n} and X1, . . .Xk ,Y1, . . . ,Yk monadic
second-order variables (corresponding to tiles) that are used to encode ~b and ~t.

I s on {1, . . . , n} encodes the horizontal incidence relation of the tiling.
I We construct two rows of tiling on top of each other:

I Z1, . . .Zk encodes the tiling of the lower row,
I Z ′

1, . . .Z
′
k encodes the tiling of the upper row,
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Complexity of model checking

Theorem

Combined complexity of model checking for monadic 2TC[∀FO] is
PSPACE-complete.

Proof.

Hardness follows from corridor tiling. Input: (T ,H,V , ~b, ~t, n).
Let s be a successor relation on {1, . . . , n} and X1, . . .Xk ,Y1, . . . ,Yk monadic
second-order variables (corresponding to tiles) that are used to encode ~b and ~t.

ϕH := ∀xy
(
s(x , y)→

∨
(i ,j)∈H

Z ′i (x) ∧ Z ′j (y)
)
,
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Complexity of model checking

Theorem

Combined complexity of model checking for monadic 2TC[∀FO] is
PSPACE-complete.

Proof.

Hardness follows from corridor tiling. Input: (T ,H,V , ~b, ~t, n).
Let s be a successor relation on {1, . . . , n} and X1, . . .Xk ,Y1, . . . ,Yk monadic
second-order variables (corresponding to tiles) that are used to encode ~b and ~t.

ϕV := ∀x
∨

(i ,j)∈V

Zi (x) ∧ Z ′j (x)
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Complexity of model checking

Theorem

Combined complexity of model checking for monadic 2TC[∀FO] is
PSPACE-complete.

Proof.

Hardness follows from corridor tiling. Input: (T ,H,V , ~b, ~t, n).
Let s be a successor relation on {1, . . . , n} and X1, . . .Xk ,Y1, . . . ,Yk monadic
second-order variables (corresponding to tiles) that are used to encode ~b and ~t.

ϕT := every point i is labelled with exactly one Z ′i ,
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Theorem

Combined complexity of model checking for monadic 2TC[∀FO] is
PSPACE-complete.

Proof.

Hardness follows from corridor tiling. Input: (T ,H,V , ~b, ~t, n).
Let s be a successor relation on {1, . . . , n} and X1, . . .Xk ,Y1, . . . ,Yk monadic
second-order variables (corresponding to tiles) that are used to encode ~b and ~t.

ϕH := ∀xy
(
s(x , y)→

∨
(i ,j)∈H

Z ′i (x) ∧ Z ′j (y)
)
, ϕV := ∀x

∨
(i ,j)∈V

Zi (x) ∧ Z ′j (x)

ϕT := every point i is labelled with exactly one Z ′i ,

The formula [TC~Z , ~Z ′ ϕT ∧ ϕH ∧ ϕV ](~X , ~Y ) describes proper tiling.
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MSO(TC) and counting

I Counter variables µ and ν on A range over {0, . . . , |A|}.
I Assume a supply of k-ary numeric predicates p(µ1, . . . , µk).

I Intuitively relations over natural numbers such as the table of multiplication.
I Similar to generalised quantifiers; a k-ary numeric predicate is a set

Qp ⊆ Nk+1 of k + 1-tuples of natural numbers.
I When evaluating a k-ary numeric predicate p(µ1, . . . , µk), the numeric

predicate Qp accesses also the cardinality of the domain of the model.
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MSO(TC) and counting

Definition

The syntax of CMSO(TC) extends the syntax of MSO(TC) as follows:

ϕ ::= µ = #{x : ϕ} | p(µ1, . . . , µk) | ∃µϕ | [TC~X , ~X ′ϕ]( ~Y , ~Y ′),

where ~X , ~X ′, ~Y , and ~Y ′ may also include counter variables.

Semantics:

A |=s µ = #{x : ϕ} iff s(µ) equals the cardinality of {a ∈ A | A |=s(x 7→a) ϕ}.
A |=s p(µ1, . . . , µk) iff

(
|A|, s(µ1), . . . , s(µk)

)
∈ Qp

A |=s ∃µϕ iff there exists i ∈ {0, . . . , |A|} such that A |=s(µ7→i) ϕ.
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MSO(TC) and counting

Definition
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Counting in NLOGSPACE

Definition (NLOGSPACE numeric predicates)

We restrict to predicates Qp for which the membership (n0, . . . , nk) ∈ Qp can be
decided in NLOGSPACE, when the numbers n0, . . . , nk are given in unary.

Example

Let k be a natural number, X ,Y ,Z ,X1, . . . ,Xn monadic second-order variables.
The following numeric predicates are decidable in NLOGSPACE:

I A |=s size(X , k) iff |s(X )| = k,

I A |=s ×(X ,Y ,Z ) iff |s(X )| × |s(Y )| = |s(Z )|,
I A |=s +(X1, . . . ,Xn,Y ) iff |s(X1)|+ · · ·+ |s(Xn)| = |s(Y )|.
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Counting in NLOGSPACE

Proposition (Immerman 87)

For every k-ary numeric predicate Qp decidable in NLOGSPACE there exists a
formula ϕp of FO(TC) over {suc , x1, . . . , xk},

A |=s p(µ1, . . . , µk) iff B |=t ϕp,

where B = {0, 1, . . . , |A|}, t(suc) is the successor relation of B, and
t(xi ) = s(µi ), for 1 ≤ i ≤ k .
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MSO(TC) (without order) simulates FO(TC) with order

Natural numbers i are simulated by sets of cardinality i .
Recall that MSO(TC) can express the Härtig quantifier!

The translation + : FO(TC)→ MSO(TC) is defined as follows:

I For ψ of the form xi = xj , define ψ+ := Hxy
(
Xi (x),Xj(y)

)
.

I For ψ of the form suc(xi , xj), define

ψ+ := ∃z
(
¬Xi (z) ∧Hxy

(
Xi (x) ∨ x = z ,Xj(y)

))
.

I All other cases: identity, where xi s replaced by Xi s.
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MSO(TC) simulates CMSO(TC)

In MSO(TC) counter variables are treated as set variables.
Define a translation ∗ : CMSO(TC)→ MSO(TC).

I For an NLOGSPACE numeric predicate Qp and ψ of the form
p(µ1, . . . , µk), define

ψ∗ := ϕ+
p (µ1, . . . , µk),

where + is the translation defined in the previous slide and ϕp is the
defining FO(TC) formula of Qp.

I For ψ of the form µ = #{x | ϕ}, the translation ψ∗ is Hxy(ϕ∗(x), µ(y)).

I All other cases: identity
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Order invariant MSO

I We compare order-invariant MSO with MSO(TC).

I In order-invariant MSO, we have an access to an ordering of the model, but
the truth of formulas should not depend on which order is present.

I E.g., even cardinality is expressible in order-invariant MSO.
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Order invariant MSO and MSO(TC)

Example

Consider the class
C = {A | |A| is a prime number}

of ∅-structures. The language of prime length words over some unary alphabet is
not regular and thus it follows via Büchi’s theorem that C is not definable in
order-invariant MSO. However the following formula of MSO(TC) defines C.

∃X∀Y ∀Z
(
∀x(X (x))∧ (size(Y , 1)∨ size(Z , 1)∨¬× (Y ,Z ,X ))

)
∧ ∃x∃y ¬x = y .

Corollary

For each vocabulary τ we have that MSO(TC) 6≤ order-inv MSO.
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Order invariant MSO and MSO(TC)

Order-invariant MSO (on unary vocabularies) is regular languages that are
invariant under letter count.

Theorem

Over unary vocabularies MSO(TC) is strictly more expressive than
order-invariant MSO.

Proof.

The proof is based on Parikh’s Theorem (1966)

I For every regular language L its letter count is a finite union of linear sets.
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Order invariant MSO and MSO(TC)
Order-invariant MSO (on unary vocabularies) is regular languages that are
invariant under letter count.

Theorem

Over unary vocabularies MSO(TC) is strictly more expressive than
order-invariant MSO.

Proof.

The proof is based on Parikh’s Theorem (1966)

I For every regular language L its letter count is a finite union of linear sets.

A subset S of Nk is a linear set if

S = {~v0 +
m∑
i=1

ai~vi | a1, . . . , am ∈ N}

for some offset ~v0 ∈ Nk and generators ~v1, . . . , ~vm ∈ Nk .
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Open question

I Does the exists an LFP-formula that is not expressible in MSO(TC). On
ordered structures, this would show that there are problems in P that are not
in NLIN, which is open (it is only know that the two classes are different).

I EVEN is definable in MSO(TC) but not in LFP.

I What is the relationship of MSO(TC) and order-invariant MSO over
vocabularies of higher arity?
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Open question Thanks!

I Does the exists an LFP-formula that is not expressible in MSO(TC). On
ordered structures, this would show that there are problems in P that are not
in NLIN, which is open (it is only know that the two classes are different).

I EVEN is definable in MSO(TC) but not in LFP.

I What is the relationship of MSO(TC) and order-invariant MSO over
vocabularies of higher arity?
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