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Descriptive Complexity

» Offers a machine independent description of complexity classes:

» Time/Space used by a machine to decide a problem
= richness of the logical language needed to describe the problem.

» Complexity classes can/could be then separated by separating logics.
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Descriptive Complexity

» Offers a machine independent description of complexity classes:

» Time/Space used by a machine to decide a problem
= richness of the logical language needed to describe the problem.

» Complexity classes can/could be then separated by separating logics.
» Many characterisations are known:
» Fagin’s Theorem 1973: Existential second-order logic characterises NP.

"A graph is three colourable” =
HREIBEIG(”each node is labeled by exactly one colour”

A "adjacent nodes are always coloured with distinct colours")
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» Offers a machine independent description of complexity classes: Background

» Time/Space used by a machine to decide a problem
= richness of the logical language needed to describe the problem.

» Complexity classes can/could be then separated by separating logics.

» Many characterisations are known:
» Fagin’s Theorem 1973: Existential second-order logic characterises NP.
> Least fixed point logic LFP characterises P on ordered structures.
» First-order transitive closure logic characterisess NLOGSPACE on ordered
structures.
» Second-order logic characterises the polynomial time hierarchy.
» Second-order transitive closure logic characterises PSPACE.




Second-order transitive closure logic SO(TC)

» Expressive declarative language — can express exactly all PSPACE properties.
» Can express step-wise defined properties in a natural and elegant manner.

» Recursive properties of graphs: Determine whether a graph G can be built

starting from some graph pattern G, by some recursive procedure.
» Already the monadic fragment MSO(TC) can express many interesting
properties:

» On strings it characterises nondeterministic linear space.

» Can express NP-complete problems (e.g., QBF).

» Can express counting.
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Transitive closure

The transitive closure TC(R) of a binary relation R C A x A is defined as follows

TC(R) :={(a, b) € A x A | there exists a finite directed R-path from a to b}.
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Transitive closure

The transitive closure TC(R) of a binary relation R C A x A is defined as follows
TC(R) :={(a, b) € A x A | there exists a finite directed R-path from a to b}.

In our setting A is set of tuples (a1, ...a,), where each a; is either an element or
a relation over some domain D.
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Let G = (V, E) be an undirected graph. Then (a, b) € TC(E) if a and b are in
the same component of G, or equivalently, if there is a path from a to b in G.
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Example

Let G = (V, E) be an undirected graph. Then (a, b) € TC(E) if a and b are in
the same component of G, or equivalently, if there is a path from a to b in G.

A graph G = (V, E) has a Hamiltonian cycle (cycle that visits every node
exactly once) if the following holds:

1. There is a relation R such that

logic
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Transitive closure

(Z,2,7',2)eR iff Z'=Zu{Z},7 ¢ Zand(z,7) € E.

2. The tuple ({x},x, V,y) is in the transitive closure of R, for some x,y € V
such that (y,x) € E.
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Let X and y be k-tuples of first-order variables, p(X,y) an FO-formula, and 2 a  |RSREEU)
model.

» ¢(x,y) defines a 2k-ary relation on 2.
» We consider this 2k-ary relation as a binary relation over k-tuples.
» We denote by BIN(gp()?, )7)) this binary relation.




Logics with transitive closure operator

First-order transitive closure logic FO(TC):

pr=x=y | X0a,. .. x) [ 9] (V)| Ixp | [TC, z¢](7,y),

where X, ):’)7 and )7’ are tuples of first-order variables of the same length.

Semantics for the TC operator:

-
/!

A b [TC, 57, ) iff (s(7), 5(7)) € TC(BIN((%, X)) )
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pr=x=y | X0a,. .. x) [ 9] (V)| Ixp | [TC, z¢](7,y),

where X, ):’)7 and y’ are tuples of first-order variables of the same length. FO(TC) & SO(TC)

Semantics for the TC operator:

A b [TC, 57, ) iff (s(7), 5(7)) € TC(BIN((%, X)) )

The sentence

VxVy x =y V [TC, »E(z,2)](x, y)

expresses connectivity of graphs (V, E).
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Second-order transitive closure logic SO(TC):

pr=x=y|[X(a,..., %) | e [ (V)| Ixp | IV | [TCx 5 el(Y, V),

FO(TC) & SO(TC)

where )_(' )?’, \7 and Y/ are tuples of first-order and second-order variables of the
same length and sort.

Semantics for the T'C operator:

A= [TCx o el(Y, V1) iff (s(V),s(¥")) € TC (BIN(g;()?, X')))
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Second-order transitive closure logic SO(TC):

pr=x=y|[X(a,..., %) | e [ (V)| Ixp | IV | [TCx 5 el(Y, V),

FO(TC) & SO(TC)

where )_(' )?’, \7 and Y/ are tuples of first-order and second-order variables of the
same length and sort.

Semantics for the T'C operator:
2 =, [TCx (Y, Y7) iff (s(V),s(Y")) € TC (BIN(g;()?, X')))

MSO(TC) is the fragment of SO(TC) in which all second-order variables have
arity 1.




The Hartig quantifier

A = Hxy(p(x), 6(y)) < the sets {a € A | A y(urs) 9(x)} and
{be Al =,sp) ¥(y)} have the same cardinality
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The Hartig quantifier

A = Hxy(p(x), 6(y)) < the sets {a € A | A y(urs) 9(x)} and
{be Al =,sp) ¥(y)} have the same cardinality

Example (The Hartig quantifier can be expressed in MSO(TC).)

Let ¥decrement denote an FO-formula expressing that s(X’) = s(X) \ {a} and
s(Y')=s(Y)\ {b} for some a € s(X) and b € s(Y). Define

wec = [TCX,Y,X’,Y’¢decrement](zv le @7 0)
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The Hartig quantifier

A = Hxy(p(x), 6(y)) < the sets {a € A | A y(urs) 9(x)} and
{be Al =,sp) ¥(y)} have the same cardinality

Example (The Hartig quantifier can be expressed in MSO(TC).)

Let ¥decrement denote an FO-formula expressing that s(X’) = s(X) \ {a} and
s(Y')=s(Y)\ {b} for some a € s(X) and b € s(Y). Define

wec = [TCX,Y,X’,Y’¢decrement](zv le @7 0)

» Now ?. holds under s iff |s(Z2)| = |s(Z)].
» Therefore Hxy(¢(x),1(y)) is equivalent with the formula

3737 (Yx(io(x)  Z()) Ay ((y) < Z'(¥)) Avbec).

Expressivity within
second-order
transitive-closure
logic

Jonni Virtema

Examples




Expressivity within

H a m I Iton Ia n CyC | e second-order

transitive-closure
Example

A graph G = (V, E) has a Hamiltonian cycle if the following holds:
1. There is a relation R such that
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(Z,2,7',2YeR iff Z'=Zu{Z},7/ ¢ Zand (z,7) € E.

2. The tuple ({x},x, V,y) is in the transitive closure of R, for some x,y € V
such that (y,x) € E.
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1. There is a relation R such that
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(Z,2,7',2YeR iff Z'=Zu{Z},7/ ¢ Zand (z,7) € E. Expressivit

2. The tuple ({x},x, V,y) is in the transitive closure of R, for some x,y € V
SUCh that (y,X) & E ;7’\"5‘(2,‘ invariant
In the language of MSO(TC) this can be written as follows: Open questions

HX)/(E()/aX) A [TCZ,Z,Z’,Z’SO]({X}aXa Vv)/))

where ¢ := =Z(2') ANVx(Z'(x) <+ (Z(x) V2’ = X)) A E(z,2').




Descriptive complexity

Theorem (Harel and Peleg 84)
SO(TC) characterises polynomial space PSPACE.

Theorem (Immerman 87)

» On finite ordered structures, first-order transitive-closure logic FO(TC)
characterises nondeterministic logarithmic space NLOGSPACE.

» On strings (word structures), SO(arity k)(TC) captures NSPACE(n*).

In particular, on strings MSO(TC) characterises nondeterministic linear space
NLIN.
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Existential positive SO(2TC)

ISO(2TC) is the syntactic fragment of SO(TC) in which
1. the existential quantifiers and the TC-operators occur only positively.
2. TC-operators bound only second-order variables.

Rosen noted (1999) that 3SO collapses to existential first-order logic JFO.
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logic

ISO(2TC) is the syntactic fragment of SO(TC) in which

1. the existential quantifiers and the TC-operators occur only positively.

Jonni Virtema

2. TC-operators bound only second-order variables.
Rosen noted (1999) that 3SO collapses to existential first-order logic JFO.

The expressive powers of 3SO(2TC) and IFO coincide.

I ... I)(Y, V') and [TCE3x ... 3x](Y, V),

Expressivity

[TC)?,)?’

where 6 is quantifier free FO-formula, are equivalent for large enough k.
(Note that k is independent of the model and depends only on the formula.) [




Corridor tiling problem

The corridor tiling problem is the following PSPACE-complete decision problem
(Chlebus 86):

Input: An instance P = (T, H,V, b, t, n), where
» T is a finite collection of tiles,
» H and V are the horizontal and vertical constraints for tiling,
» band tare n-tuples of tiles.

Output: Does there exists a tiling of width n having b as the bottom row and £
as the top row of tiles?
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Combined complexity of model checking for monadic 2TC[VFO] is
PSPACE-complete.

Hardness follows from corridor tiling. Input: (T, H, V, 5, t, n). MSO(TC) and
Let s be a successor relation on {1,...,n} and Xi,... X, Y1,..., Yx monadic
second-order variables (corresponding to tiles) that are used to encode b and t.
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Complexity of model checking

Combined complexity of model checking for monadic 2TC[VFO] is
PSPACE-complete.

Hardness follows from corridor tiling. Input: (T, H, V, 57 t, n).
Let s be a successor relation on {1,...,n} and Xi,... Xk, Y1,..., Yx monadic
second-order variables (corresponding to tiles) that are used to encode b and t.

» son {1,...,n} encodes the horizontal incidence relation of the tiling.
» We construct two rows of tiling on top of each other:

> Zi,...Zx encodes the tiling of the lower row,
» Z/,...Z] encodes the tiling of the upper row,
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Hardness follows from corridor tiling. Input: (T, H, V, 5, t, n). eOTC) and
Let s be a successor relation on {1,...,n} and Xi,... Xk, Y1,..., Yx monadic EetLE
second-order variables (corresponding to tiles) that are used to encode b and t. e invariant
Open questions
PH = vX.y \/ Z ( ))7
(ij)eH




Complexity of model checking

Combined complexity of model checking for monadic 2T C[VFO] is
PSPACE-complete.

Hardness follows from corridor tiling. Input: (T, H, V, 5, t, n).
Let s be a successor relation on {1,...,n} and Xi,... Xk, Y1,..., Yx monadic
second-order variables (corresponding to tiles) that are used to encode b and t.

Yy = Vx \/ Zi(x) A Zj(x)
(ij)ev
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PSPACE-complete.

Hardness follows from corridor tiling. Input: (T, H, V, 5, t, n). MSO(TC) and
Let s be a successor relation on {1,...,n} and Xi,... X, Y1,..., Yx monadic
second-order variables (corresponding to tiles) that are used to encode b and t.
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PSPACE-complete. :

Hardness follows from corridor tiling. Input: (T, H, V, E, t, n).
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Let s be a successor relation on {1,...,n} and Xi,... Xk, Y1,..., Yx monadic

second-order variables (corresponding to tiles) that are used to encode b and t.

oH = Vxy(s \/ ZI(x)ANZi(y)), v i=Vx \/ Zi(x) A Z{(x)
(iy)eH (i)ev

@1 := every point / is labelled with exactly one Z/,

— o

The formula [TC3 5 o7 A A @v](X,Y) describes proper tiling. O




MSO(TC) and counting

» Counter variables ;i and v on 2 range over {0,..., |A|}.
» Assume a supply of k-ary numeric predicates p(p1, . . ., jik)-
» Intuitively relations over natural numbers such as the table of multiplication.
» Similar to generalised quantifiers; a k-ary numeric predicate is a set
Qp C NA*L of k + 1-tuples of natural numbers.
» When evaluating a k-ary numeric predicate p(p1, ..., ik), the numeric
predicate @, accesses also the cardinality of the domain of the model.
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MSO(TC) and counting

The syntax of CMSO(TC) extends the syntax of MSO(TC) as follows:

pu= = #{X : ()0} | p(,Ul, °009 7,“/() | 3#90 | [TC)_('V)(/SO](\_/: \7,)7

where X, X’, Y, and Y’ may also include counter variables.

Expressivity within
second-order
transitive-closure
logic

Jonni Virtema

MSO(TC) and

counting




MSO(TC) and counting

The syntax of CMSO(TC) extends the syntax of MSO(TC) as follows:

pu= = #{X : ()0} | p(,Ul, °009 7,“/() | 3#90 | [TC)_('V)(/SO](\_/: \7,)7

where X, X’, Y, and Y’ may also include counter variables.
Semantics:

2 [=s p= #{x : ¢} iff s(11) equals the cardinality of {a € A [ 2l |=g(xa) ¥}

A s p(pa, - ) 1fF (JAL s(ua), -5 s(uk)) € Qp
2 [=s Jugp iff there exists i € {0, ..., |A|} such that & |=¢(,) »-
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Counting in NLOGSPACE

Definition (NLOGSPACE numeric predicates)

We restrict to predicates @, for which the membership (noy...,ng) € @p can be

decided in NLOGSPACE, when the numbers ng, . .

., Nk are given in unary.

Expressivity within
second-order
transitive-closure
logic

Jonni Virtema

MSO(TC) and

counting




Counting in NLOGSPACE

Definition (NLOGSPACE numeric predicates)

We restrict to predicates @, for which the membership (noy...,ng) € @p can be
decided in NLOGSPACE, when the numbers ng, ..., nx are given in unary.

Let k be a natural number, X, Y, Z, X1, ..., X, monadic second-order variables.
The following numeric predicates are decidable in NLOGSPACE:

> 9 b=, size(X, k) iff [s(X)| = k,
> 2 b= x(X, Y, Z) iff [s(X)| % |s(Y)| = |s(Z)],
b b H(Xes e X, V) [SOX)] -+ [5(X0)| = [s(Y).
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Counting in NLOGSPACE

Proposition (Immerman 87)

For every k-ary numeric predicate Q, decidable in NLOGSPACE there exists a
formula pp of FO(TC) over {suc,x1, ..., Xk},

A s p(p, - - -5 k) ifFB e pp,

where B = {0,1,...,|A|}, t(suc) is the successor relation of B, and
t(x;) = s(u;), for 1 <i < k.
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MSO(TC) (without order) simulates FO(TC) with order

Natural numbers i are simulated by sets of cardinality i.
Recall that MSO(TC) can express the Hartig quantifier!
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MSO(TC) (without order) simulates FO(TC) with order e r
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Natural numbers i are simulated by sets of cardinality i.
Recall that MSO(TC) can express the Hartig quantifier!

The translation © : FO(TC) — MSO(TC) is defined as follows:
» For ¢ of the form x; = x;, define ¥ := Hxy (Xi(x), X;(y)). MSO(TC) and

counting

» For ¢ of the form suc(x;, x;), define
Yt =3z <ﬂX,-(z) A Hxy (Xi(x) V x = z, XJ(y)))

» All other cases: identity, where x;s replaced by X;s.




MSO(TC) simulates CMSO(TC)

In MSO(TC) counter variables are treated as set variables.
Define a translation * : CMSO(TC) — MSO(TC).

» For an NLOGSPACE numeric predicate Q, and 1 of the form
p(p1, .-, 1), define

1/]* = Qoz_(ulu HE 7Hk)a

where T is the translation defined in the previous slide and ¢, is the
defining FO(TC) formula of Qp.

» For ) of the form = #{x | ¢}, the translation ¢* is Hxy(¢*(x), u(y))-

> All other cases: identity
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Order invariant MSO

» We compare order-invariant MSO with MSO(TC).

» In order-invariant MSO, we have an access to an ordering of the model, but
the truth of formulas should not depend on which order is present.

» E.g., even cardinality is expressible in order-invariant MSO.
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Order invariant MSO and MSO(TC)

Example

Consider the class
C ={2]|A| is a prime number}

of (-structures. The language of prime length words over some unary alphabet is
not regular and thus it follows via Biichi's theorem that C is not definable in
order-invariant MSO. However the following formula of MSO(TC) defines C.

AXVYVZ (Vx(X(x)) A (size(Y,1) Vsize(Z,1) V- x (Y, Z,X))) AIxTy ~x = y.

Corollary

For each vocabulary T we have that MSO(TC) £ order-inv MSO.
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Order invariant MSO and MSO(TC)

Order-invariant MSO (on unary vocabularies) is regular languages that are
invariant under letter count.

Over unary vocabularies MSO(TC) is strictly more expressive than
order-invariant MSO.

The proof is based on Parikh’s Theorem (1966)
> For every regular language L its letter count is a finite union of linear sets.
Ol
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Order invariant MSO and MSO(TC) e r
transitive-closure

Order-invariant MSO (on unary vocabularies) is regular languages that are logic
invariant under letter count. Jonni Virtema

Over unary vocabularies MSO(TC) is strictly more expressive than
order-invariant MSO.

The proof is based on Parikh’s Theorem (1966)

Order invariant

> For every regular language L its letter count is a finite union of linear sets. MSO

Ol

A subset S of N¥ is a linear set if

m
5:{\70+Za;\7;'|31,...,3m€N}
i=1

for some offset vy € N¥ and generators i, . .., Vp, € Nk,
8



Open question

» Does the exists an LEP-formula that is not expressible in MSO(TC). On
ordered structures, this would show that there are problems in P that are not
in NLIN, which is open (it is only know that the two classes are different).

» EVEN is definable in MSO(TC) but not in LFP.
» What is the relationship of MSO(TC) and order-invariant MSO over
vocabularies of higher arity?
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Open question Thanks!

» Does the exists an LEP-formula that is not expressible in MSO(TC). On
ordered structures, this would show that there are problems in P that are not
in NLIN, which is open (it is only know that the two classes are different).

» EVEN is definable in MSO(TC) but not in LFP.
» What is the relationship of MSO(TC) and order-invariant MSO over
vocabularies of higher arity?
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