New developments in temporal team semantic

Jonni Virtema

University of Sheffield, UK

Logic, databases and complexity: new methods and challenges 17 February 2022

Main references

- ► Team Semantics for the Specification and Verification of Hyperproperties. MFCS 2018 paper with A. Krebs, A. Meier, and M. Zimmermann.
- ► Linear-time Temporal Logic with Team Semantics: Expressivity and Complexity. FSTTCS 2021 paper with B. Finkbeiner, J. Hofmann, J. Kontinen, and F. Yang.
- Temporal Team Semantics Revisited.
 Submitted manuscript with J. Gutsfeld, A. Meier, and C. Ohrem.

Logics for verification and specification of concurrent systems

Basic setting:

- ➤ System (e.g., piece of software or hardware)

 ¬¬ Kripke structure depicting the behaviour of the system
- ► A single run of the system

 → a trace generated by the Kripke structure
- ► A property of the system (e.g., every request is eventually granted)
 → a formula of some formal language expressing the property.

Model checking:

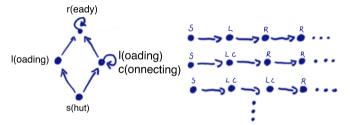
Check whether a given system satisfies a given specification.

SAT solving:

► Check whether a given specification (or collection of) can be realised.

Traceproperties and hyperproperties

Opening your office computer after holidays:



Traceproperties hold in a system if each trace (in isolation) has the property:

▶ The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

► The computer will be ready in bounded time.

Quantifier extensions vs. team semantics

Classical setting:

- ► LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc. are prominent logics for traceproperties vs. hyperproperties of systems
 - ► Traceproperty: Each request is eventually granted (properties of traces)
 - ▶ Hyperproperty: Each request is granted in bounded time (properties of sets of traces)
- HyperLogics are of high complexity or undecidable.
 Not well suited for properties involving unbounded number of traces.

Alternative way by using team semantics

- ► Temporal logics with team semantics for expressing hyperproperties Purely modal logic & well suited for properties of unbounded number of traces.
- Expressivity: How TeamLTL variants relate to HyperLogics?
- Complexity: Where is the undecidability frontier of TeamLTL extensions?
 - ► A large EXPTIME fragment: left-flat and downward closed logics
 - ► Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

- ► Linear-time temporal logic (LTL) is one of the most prominent logics for the specification and verification of reactive and concurrent systems.
- Model checking tools like SPIN and NuSMV automatically verify whether a given computer system is correct with respect to its LTL specification.
- ▶ One reason for the success of LTL over first-order logic is that LTL is a purely modal logic and thus has many desirable properties.
 - LTL is decidable (PSPACE-complete model checking and satisfiability).
 - ▶ $FO^2(\leq)$ and $FO^3(\leq)$ SAT are NEXPTIME-complete and non-elementary.
- Caveat: LTL can specify only traceproperties.

Recipe for logics for hyperproperties:

A logic for traceproperties \rightsquigarrow add trace quantifiers

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \vee \varphi) \mid X\varphi \mid \varphi U\varphi$$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi \models_{\mathcal{T}} \varphi$

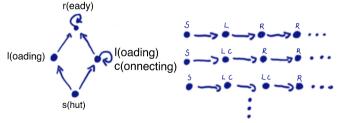
$$\varphi ::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi$$

$$\psi ::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi$$

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: $\exists p\varphi$, $\forall p\varphi$

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - ▶ Model checking for ∃*HyperLTL and HyperLTL are PSPACE and non-elementary.
 - HyperLTL satisfiability is highly undecidable.
 - ► HyperLTL formulae express properties expressible using fixed finite number of traces.

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - ► Model checking for ∃*HyperLTL and HyperLTL are PSPACE and non-elementary.
 - HyperLTL satisfiability is highly undecidable.
 - ▶ HyperLTL formulae express properties expressible using fixed finite number of traces.
- Bounded termination is not definable in HyperLTL (but is in HyperQPTL)



► Team semantics is a candidate for a purely modal logic without the above caveat.

Core of Team Semantics

In most studied logics formulae are evaluated in a single state of affairs.

E.g.,

- a first-order assignment in first-order logic,
- a propositional assignment in propositional logic,
- a possible world of a Kripke structure in modal logic.
- In team semantics sets of states of affairs are considered.

E.g.,

- ▶ a set of first-order assignments in first-order logic,
- ▶ a set of propositional assignments in propositional logic,
- ▶ a set of possible worlds of a Kripke structure in modal logic.
- ► These sets of things are called teams.

Team Semantics: Historical Picture Independence logic Goldel Whitiateen Inclusion & Exclusion Logic Confin Branchines Quantifiers Hankin Dependence Logic Visitification IF modal ogic Fulenteino 2015 Healts et al., Team CTL 1960 1990 2005 2000 Outande da A Probabilistic Teams 2020 Täätänet Modal Degendence Logic Mille Modal Team Logic

LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \vee \varphi) \mid X\varphi \mid \varphi U\varphi$$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi \models_{\mathcal{T}} \varphi$

$$arphi ::= \exists \pi arphi \mid \forall \pi arphi \mid \psi$$

$$\psi ::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi$$

In TeamLTL the satisfying object is a set of traces. We use team semantics: $(T, i) \models \varphi$

$$arphi ::=
ho \mid
eg
ho \mid (arphi \lor arphi) \mid (arphi \land arphi) \mid X arphi \mid arphi U \mid arphi W arphi$$

- + new atomic statements (dependence and inclusion atoms: $dep(\vec{p}, q)$, $\vec{p} \subseteq \vec{q}$)
- + additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity

Temporal team semantics is universal and synchronous

$$(T,i) \models p \text{ iff } \forall t \in T : t[i](p) = 1$$
 $(T,i) \models \neg p \text{ iff } \forall t \in T : t[i](p) = 0$ $(T,i) \models F\varphi \text{ iff } (T,j) \models \varphi \text{ for some } j \geq i \quad (T,i) \models G\varphi \text{ iff } (T,j) \models \varphi \text{ for all } j \geq i$

L2/ 27

Temporal team semantics is universal and synchronous

$$(T,i) \models p \text{ iff } \forall t \in T : t[i](p) = 1$$
 $(T,i) \models \neg p \text{ iff } \forall t \in T : t[i](p) = 0$ $(T,i) \models \mathsf{F}\varphi \text{ iff } (T,j) \models \varphi \text{ for some } j \geq i \quad (T,i) \models \mathsf{G}\varphi \text{ iff } (T,j) \models \varphi \text{ for all } j \geq i$

There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, orall \pi \, \mathsf{F} p \wedge \mathsf{G}(p o \mathsf{G}
eg a_\pi)$$

There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, orall \pi \, \mathsf{F} p \wedge \mathsf{G}(p o \mathsf{G}
eg a_\pi)$$

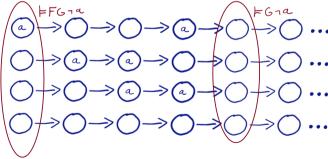
$$\begin{array}{c} \textcircled{a} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \rightarrow \textcircled{\bigcirc} \cdots \\ \end{array}$$

There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, \forall \pi \, \mathsf{F} p \wedge \mathsf{G}(p o \mathsf{G} \neg a_\pi)$$

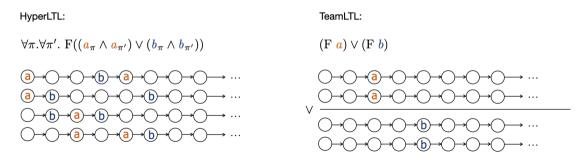
There is a timepoint (common for all traces) after which *a* does not occur. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists \rho \, \forall \pi \, \mathsf{F} \rho \wedge \mathsf{G} (\rho \to \mathsf{G} \neg a_\pi)$$



A trace-set T satisfies $\varphi \lor \psi$ if it decomposed to sets T_{φ} and T_{ψ} satisfying φ and ψ .

$$(T,i) \models \varphi \lor \psi$$
 iff $(T_1,i) \models \varphi$ and $(T_2,i) \models \psi$, for some $T_1 \cup T_2 = T$ $(T,i) \models \varphi \land \psi$ iff $(T,i) \models \varphi$ and $(T,i) \models \psi$



Dependence atom $dep(p_1, \ldots, p_m, q)$ states that p_1, \ldots, p_m functionally determine q:

$$(T,i) \models \operatorname{dep}(p_1,\ldots,p_m,q) \text{ iff } \forall t,t' \in T\Big(\bigwedge_{i \in \mathcal{I}} t[i](p_j) = t'[i](p_j)\Big) \Rightarrow (t[i](q) = t'[i](q))$$

 $(G \ dep(i1, o)) \lor (G \ dep(i2, o))$

$$(1,0) \longrightarrow (1) \longrightarrow (1,0) \longrightarrow \cdots$$

$$(1,0) \longrightarrow (0) \longrightarrow (1,0) \longrightarrow \cdots$$

$$(2,0) \longrightarrow (2) \longrightarrow (2,0) \longrightarrow \cdots$$

"whenever the traces agree on i2, they agree on ${\color{red}0}"$

"whenever the traces agree on i1, they agree on o"

Temporal team semantics

Definition

Temporal team is (T, i), where T a set of traces and $i \in \mathbb{N}$.

$$\begin{array}{lll} (T,i) \models \rho & \text{iff} & \forall t \in T : t[0](\rho) = 1 \\ (T,i) \models \neg \rho & \text{iff} & \forall t \in T : t[0](\rho) = 0 \\ (T,i) \models \phi \land \psi & \text{iff} & (T,i) \models \phi \text{ and } (T,i) \models \psi \\ (T,i) \models \phi \lor \psi & \text{iff} & (T_1,i) \models \phi \text{ and } (T_2,i) \models \psi, \text{ for some } T_1, T_2 \text{ s.t. } T_1 \cup T_2 = T \\ (T,i) \models \mathsf{X}\varphi & \text{iff} & (T,i+1) \models \varphi \\ (T,i) \models \phi \cup \psi & \text{iff} & \exists k \geq i \text{ s.t. } (T,k) \models \psi \text{ and } \forall m : i \leq m < k \Rightarrow (T,m) \models \phi \\ (T,i) \models \phi \cup \psi & \text{iff} & \forall k \geq i : (T,k) \models \phi \text{ or } \exists m \text{ s.t. } i \leq m \leq k \text{ and } (T,m) \models \psi \\ \end{array}$$

As usual $F\varphi := (\top U\varphi)$ and $G\varphi := (\varphi W \bot)$.

 $\operatorname{TeamLTL}(\emptyset,\subseteq)$ is the extension with the atoms and extra connectives in the brackets.

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an n-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

$$(T,i) \models [\varphi_1,\ldots,\varphi_n]_B$$
 iff $\{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B$.

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an n-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

$$(T,i) \models [\varphi_1,\ldots,\varphi_n]_B \quad \text{iff} \quad \{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B.$$

Theorem

TeamLTL(\otimes , NE, \dot{A}) can express all $[\varphi_1, \dots, \varphi_n]_B$.

TeamLTL(\bigcirc , $\stackrel{1}{A}$) can express all $[\varphi_1, \dots, \varphi_n]_B$, for downward closed B.

- ▶ *B* is downdard closed if $S_1 \in B \& S_2 \subseteq S_1$ imply $S_2 \in B$.
- \blacktriangleright $(T,i) \models \varphi \otimes \psi$ iff $(T,i) \models \varphi$ or $(T,i) \models \psi$
- ightharpoonup (T, i) \models NE iff $T \neq \emptyset$.
- $ightharpoonup (T,i) \models A\varphi \text{ iff } (T',i) \models \varphi, \text{ for all } T' \subseteq T.$
- $ightharpoonup (T,i) \models \stackrel{1}{\mathsf{A}} \varphi \text{ iff } (\{t\},i) \models \varphi, \text{ for all } t \in T.$

Complexity results

Logic	Model Checking Result
TeamLTL without ∨	in PSPACE
k-coherent TeamLTL(~	in EXPSPACE
left-flat $\operatorname{TeamLTL}(\otimes, \overset{1}{A})$) in EXPSPACE
$\mathrm{TeamLTL}(\subseteq, \oslash)$	Σ^0_1 -hard
$\mathrm{TeamLTL}(\subseteq, \otimes, A)$	Σ^1_1 -hard
$\mathrm{TeamLTL}(\sim)$	complete for third-order arithmetic [Luck 2020]

Table: Complexity results.

- ▶ *k*-coherence: $(T, i) \models \varphi$ iff $(S, i) \models \varphi$ for all $S \subseteq T$ s.t. $|S| \le k$
- ▶ left-flatness: Restrict U and W syntactically to $(\mathring{A}\varphi U\psi)$ and $(\mathring{A}\varphi W\psi)$
- ightharpoonup \sim is contradictory negation and $\mathrm{TeamLTL}(\sim)$ subsumes all the other logics \sim

Source of inclusion results

Table: Expressivity results. † holds since $\operatorname{TeamLTL}(\overset{1}{\mathsf{A}}, \otimes)$ is downward closed.

- $ightharpoonup \exists_p$ is a quantification of a new proposition
- $\stackrel{"}{\triangleright} \stackrel{"}{Q_p^*}$ is quantification of new uniform propositions (unique value for each time step)
- $ightharpoonup \forall_{\pi}$ is a quantification of a trace variable

Source of Undecidability

Definition

A non-deterministic 3-counter machine M consists of a list I of n instructions that manipulate three counters C_I , C_m and C_r . All instructions are of the following forms:

- $ightharpoonup C_a^+$ goto $\{j_1,j_2\}$, C_a^- goto $\{j_1,j_2\}$, if $C_a=0$ goto j_1 else goto j_2 ,
- where $a \in \{I, m, r\}, 0 \le j_1, j_2 < n$.
 - ▶ configuration: tuple (i, j, k, l), where $0 \le i < n$ is the next instruction to be executed, and $j, k, l \in \mathbb{N}$ are the current values of the counters C_l , C_m and C_r .
 - **computation**: infinite sequence of consecutive configurations starting from the initial configuration (0,0,0,0).
 - **b** computation **b**-recurring if the instruction labelled **b** occurs infinitely often in it.
 - ▶ computation is lossy if the counter values can non-deterministically decrease

Theorem (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy) b-recurring computation for a given b is $(\Sigma_1^0$ -complete) Σ_1^1 -complete.

Undecidability results

Theorem

Model checking for $\operatorname{TeamLTL}(\mathbb{Q},\subseteq)$ is Σ_0^1 -hard. Model checking for $\operatorname{TeamLTL}(\mathbb{Q},\subseteq,\mathsf{A})$ is Σ_1^1 -hard.

Proof Idea:

- reduce existence of *b*-recurring computation of given 3-counter machine M and instruction label b to model checking problem of $\operatorname{TeamLTL}(\emptyset, \subseteq, A)$
- ▶ $TeamLTL(\emptyset, \subseteq)$ suffices to enforce lossy computation
- ▶ $(T[i,\infty],0)$ encodes the value of counters of the *i*th configuration the value of C_a is the cardinality of the set $\{t \in T[i,\infty] \mid t[0](c_a) = 1\}$

Modes of asynchronicity

- Synchronous TeamLTL:
 - $ightharpoonup (T,i) \models \varphi$
 - Collection of traces T with one global clock i.
- Asynchronous TeamLTL:
 - $ightharpoonup (T,f) \models \varphi$
 - ▶ Collection of traces T with a collection of local clocks $f: T \to \mathbb{N}$.
 - Local clocks are completely independent.

Modes of asynchronicity

- Synchronous TeamLTL:
 - $ightharpoonup (T,i) \models \varphi$
 - Collection of traces T with one global clock i.
- Asynchronous TeamLTL:
 - $ightharpoonup (T,f) \models \varphi$
 - ▶ Collection of traces T with a collection of local clocks $f: T \to \mathbb{N}$.
 - Local clocks are completely independent.
- ► TeamLTL with time evaluation functions (tefs):
 - $ightharpoonup (T, \tau) \models \varphi$
 - ▶ Collection of traces T and a tef $\tau \colon \mathbb{N} \times T \to \mathbb{N}$ relating a global clock to local clocks.
 - The behaviour of local clocks is determined by a tef.
 - Synchronous TeamLTL is an instance, where the tef is synchronous!
 - ▶ (cf. trajectories of Bonakdarpour, Prabhakar, Sánchez, NASA Formal Methods 2020)

Properties of tefs

Property	Definition
Monotonicity	$orall i \in \mathbb{N} : au(i) \leq au(i+1)$
Strict Monotonicity	$orall i \in \mathbb{N}: au(i) < au(i+1)$
Stepwiseness	$orall i \in \mathbb{N} : au(i) \leq au(i+1) \leq au(i) + ec{1}$
*Fairness	$orall i \in \mathbb{N} orall t \in \mathcal{T} \exists j \in \mathbb{N} : au(j,t) \geq i$
*Non-Parallelism	$orall i \in \mathbb{N}$: $i = \sum_{t \in T} au(i,t)$
*Synchronicity	$\forall i, i' \in \mathbb{N} \ \forall t \in \widetilde{T} : \tau(i, t) = \tau(i, t')$

Table: * are optional. $\tau(i)$ is the tuple $(\tau(i,t))_{t\in\mathcal{T}}$ of values of local clocks at time i.

Properties of tefs

Property	Definition
Monotonicity	$orall i \in \mathbb{N}: au(i) \leq au(i+1)$
Strict Monotonicity	$orall i \in \mathbb{N}: au(i) < au(i+1)$
Stepwiseness	$orall i \in \mathbb{N} : au(i) \leq au(i+1) \leq au(i) + ec{1}$
*Fairness	$orall i \in \mathbb{N} orall t \in \mathcal{T} \exists j \in \mathbb{N} : au(j,t) \geq i$
*Non-Parallelism	$\forall i \in \mathbb{N} : i = \sum_{t \in T} \tau(i, t)$
*Synchronicity	$\forall i, i' \in \mathbb{N} \ \forall t \in \mathcal{T} : \tau(i, t) = \tau(i, t')$

Table: * are optional. $\tau(i)$ is the tuple $(\tau(i,t))_{t\in T}$ of values of local clocks at time i.

- stuttering tef satisfies monotonicity
- tef satisfies strict monotonicity and stepwiseness
- synchronous tef satisfies strict monotonicity, stepwiseness, and synchronicity
- ▶ tef is initial, if $\tau(0, t) = 0$ for each $t \in T$.
- ▶ *k*-shifted tef if defined by $\tau[k,\infty](i,t) := \tau(i+k,t)$, for all $t \in T$, $i \in \mathbb{N}$. 22 / 27

Team semantics with tefs

A temporal team is a pair (T, τ) , where T is a multiset of traces and τ is a tef for T. A pair (T, τ) is called a stuttering temporal team if τ is a stuttering tef for T.

$$\begin{array}{lll} (T,\tau) \models p & \text{iff} & \forall t \in T : p \in t[\tau(0,t)] \\ (T,\tau) \models \neg p & \text{iff} & \forall t \in T : p \notin t[\tau(0,t)] \\ (T,\tau) \models (\varphi \land \psi) & \text{iff} & (T,\tau) \models \varphi \text{ and } (T,\tau) \models \psi \\ (T,\tau) \models (\varphi \lor \psi) & \text{iff} & \exists T_1 \uplus T_2 = T : (T_1,\tau) \models \varphi \text{ and } (T_2,\tau) \models \psi \\ (T,\tau) \models X\varphi & \text{iff} & (T,\tau[1,\infty]) \models \varphi \\ (T,\tau) \models [\varphi \cup \psi] & \text{iff} & \exists k \in \mathbb{N} \text{ such that } (T,\tau[k,\infty]) \models \psi \text{ and } \\ & \forall m : 0 \leq m < k \Rightarrow (T,\tau[m,\infty]) \models \varphi \\ (T,\tau) \models [\varphi \cup \psi] & \text{iff} & \forall k \in \mathbb{N} : (T,\tau[k,\infty]) \models \varphi \text{ or } \\ & \exists m \text{ s.t. } m \leq k \text{ and } (T,\tau[m,\infty]) \models \psi \\ \end{array}$$

Variants of TeamLTL

∃TeamLTL

 $ightharpoonup T \models_{\exists} \varphi$ if $(T, \tau) \models \varphi$ for some initial tef of T.

∀Teaml TI

 $ightharpoonup T \models_{\forall} \varphi \text{ if } (T, \tau) \models \varphi \text{ for all initial tefs of } T.$

Synchronous TeamLTL

▶ $T \models_s \varphi$ if $(T, \tau) \models \varphi$ for the unique initial synchronous tef of T.

Variants of TeamLTL

∃TeamLTL

▶ $T \models_\exists \varphi$ if $(T, \tau) \models \varphi$ for some initial tef of T.

∀Teaml TI

▶ $T \models_{\forall} \varphi$ if $(T, \tau) \models \varphi$ for all initial tefs of T.

Synchronous TeamLTL

▶ $T \models_s \varphi$ if $(T, \tau) \models \varphi$ for the unique initial synchronous tef of T.

Theorem

A formula is satisfiable in $\exists \mathrm{TeamLTL}$ iff it is satisfiable in synchronous $\mathrm{TeamLTL}$.

A formula is valid in $\forall TeamLTL$ iff it is valid in synchronous TeamLTL.

Theorem

Model checking of synchronous $\operatorname{TeamLTL}$ reduces in linear time to the model checking of $\exists \operatorname{TeamLTL}$ and $\forall \operatorname{TeamLTL}(\emptyset, \operatorname{NE})$.

Quantifier extensions of TeamLTL

► TeamCTL* has the same syntax as CTL*:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\varphi \mid \varphi \mathsf{W}\varphi \mid \exists \varphi \mid \forall \varphi$$

The quantifiers \exists and \forall range over tefs:

$$(T,\tau) \models \exists \varphi \text{ iff } (T,\tau') \models \varphi \text{ for some tef } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0),$$

 $(T,\tau) \models \forall \varphi \text{ iff } (T,\tau') \models \varphi \text{ for all tefs } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0).$

Quantifier extensions of TeamLTL

► TeamCTL* has the same syntax as CTL*:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\varphi \mid \varphi \mathsf{W}\varphi \mid \exists \varphi \mid \forall \varphi$$

The quantifiers \exists and \forall range over tefs:

$$(T,\tau) \models \exists \varphi \text{ iff } (T,\tau') \models \varphi \text{ for some tef } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0),$$

 $(T,\tau) \models \forall \varphi \text{ iff } (T,\tau') \models \varphi \text{ for all tefs } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0).$

► TeamCTL has the same syntax as CTL:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{X}_{\exists} \varphi \mid \mathsf{X}_{\forall} \varphi \mid \varphi \mathsf{U}_{\exists} \varphi \mid \varphi \mathsf{U}_{\forall} \varphi \mid \varphi \mathsf{W}_{\exists} \varphi \mid \varphi \mathsf{W}_{\forall} \varphi,$$

where $\varphi U_{\exists} \varphi$ is a shorthand for $\exists \varphi U \varphi$ etc.

Quantifier extensions of TeamLTL

► TeamCTL* has the same syntax as CTL*:

$$\varphi ::= p \mid \neg p \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \mathsf{X} \varphi \mid \varphi \mathsf{U} \varphi \mid \varphi \mathsf{W} \varphi \mid \exists \varphi \mid \forall \varphi$$

The quantifiers \exists and \forall range over tefs:

$$(T,\tau) \models \exists \varphi \text{ iff } (T,\tau') \models \varphi \text{ for some tef } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0),$$
 $(T,\tau) \models \forall \varphi \text{ iff } (T,\tau') \models \varphi \text{ for all tefs } \tau' \text{ of } T \text{ s.t. } \tau'(0) = \tau(0).$

► TeamCTL has the same syntax as CTL:

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{X}_{\exists} \varphi \mid \mathsf{X}_{\forall} \varphi \mid \varphi \mathsf{U}_{\exists} \varphi \mid \varphi \mathsf{U}_{\forall} \varphi \mid \varphi \mathsf{W}_{\exists} \varphi \mid \varphi \mathsf{W}_{\forall} \varphi,$$

where $\varphi U \exists \varphi$ is a shorthand for $\exists \varphi U \varphi$ etc.

- ▶ $\exists TeamCTL^*$ is the fragments of TeamCTL without the modalities $\{U_{\forall}, W_{\forall}, X_{\forall}\}$
- $\forall \text{TeamCTL}$ is the fragments of TeamCTL without the modalities $\{U_{\exists}, W_{\exists}, X_{\exists}\}$
- $\exists \mathrm{TeamCTL^*}$, $\forall \mathrm{TeamCTL^*}$ are fragments of $\mathrm{TeamCTL^*}$ without \forall and \exists , $\mathrm{resp.}/27$

Complexity results

Model Checking Problem for	Complexity
$\exists \operatorname{TeamLTL}(\emptyset,\subseteq)$	Σ_1^0 -hard
$\forall \text{TeamLTL}(\emptyset, \subseteq, \text{NE})$	$\Sigma_1^{ ilde{0}}$ -hard
$\exists TeamCTL^*(\lozenge, \subseteq)$	$\Sigma_1^{ ilde{0}}$ -hard
$\forall \text{TeamCTL}(\emptyset, \subseteq)$	$\Sigma_1^{ ilde{0}}$ -hard
$\exists TeamCTL^*(\lozenge)$	$\Sigma_1^{ ilde{1}}$ -hard
$\operatorname{TeamCTL}^*(\mathcal{S}, \operatorname{ALL})$ for k-synchronous or k-	decidable
context-bounded tefs	
$\operatorname{TeamCTL}^*(\mathcal{S})$ for k -synchronous or k -context-	polynomial time
bounded tefs, where k and the number of traces	
is fixed	

Table: Complexity results overview. The Σ^0_1 -hardness results follow via embeddings of synchronous $\operatorname{TeamLTL}$, whereas the Σ^1_1 -hardness truly relies on asynchronity. ALL is the set of all generalised atoms and $\mathcal{S} = \{ \oslash, \operatorname{NE}, \overset{1}{A}, \operatorname{dep}, \subseteq \}$.

Summary

- General framework for temporal team semantics
- ▶ We can combine asynchronous and synchronous tefs
- We can embed synchronous TeamLTL
- highly undecidable model-checking problem
- first steps in identifying decidable fragments

Summary

- General framework for temporal team semantics
- ▶ We can combine asynchronous and synchronous tefs
- We can embed synchronous TeamLTL
- highly undecidable model-checking problem
- first steps in identifying decidable fragments

Current and future directions

- Indentification of decidable fragments and variants
- Consider tefs also as inputs given in some finite way.

Summary

- General framework for temporal team semantics
- We can combine asynchronous and synchronous tefs
- We can embed synchronous TeamLTL
- highly undecidable model-checking problem
- first steps in identifying decidable fragments

Current and future directions

- Indentification of decidable fragments and variants
- Consider tefs also as inputs given in some finite way.

Thank you!