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Logics for verification and specification of concurrent systems

Basic setting:
» System (e.g., piece of software or hardware)
~» Kripke structure depicting the behaviour of the system
» A single run of the system
~> a trace generated by the Kripke structure

» A property of the system (e.g., every request is eventually granted)
~» a formula of some formal language expressing the property.

Model checking:
» Check whether a given system satisfies a given specification.
SAT solving:

» Check whether a given specification (or collection of) can be realised.



Traceproperties and hyperproperties

Opening your office computer after holidays:
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Traceproperties hold in a system if each trace (in isolation) has the property

» The computer will be eventually ready (or will be loading forever)
Hyperproperties are properties of sets of traces:

» The computer will be ready in bounded time.



Quantifier extensions vs. team semantics

Classical setting:
» LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems
> Traceproperty: Each request is eventually granted (properties of traces)
» Hyperproperty: Each request is granted in bounded time (properties of sets of traces)
» HyperlLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.

Alternative way by using team semantics
> Temporal logics with team semantics for expressing hyperproperties
Purely modal logic & well suited for properties of unbounded number of traces.
> Expressivity: How TeamLTL variants relate to HyperLogics?

» Complexity: Where is the undecidability frontier of TeamLTL extensions?

» A large EXPTIME fragment: left-flat and downward closed logics
» Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable



Logics for traceproperties and hyperproperties

» Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

» Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

» One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.
» LTL is decidable (PSPACE-complete model checking and satisfiability).
» FO?(<) and FO*(<) SAT are NEXPTIME-complete and non-elementary.

» Caveat: LTL can specify only traceproperties.



Logics for traceproperties and hyperproperties

Recipe for logics for hyperproperties:
A logic for traceproperties ~» add trace quantifiers

In LTL the satisfying object is a trace: T =@ iff Vite T 1t =
pu=ploel(eVe)| Xe|eUp
In HyperLTL the satisfying object is a set of traces and a trace assignment: Il =1 ¢

@ = 3dmp [ Vmp [
Yu=pr | [ (PVY) | XY [ YUY

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: Ipp, Vpy



Logics for traceproperties and hyperproperties

» Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
» Retain some desirable properties of LTL, but are not purely modal logics

» Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary.
» HyperLTL satisfiability is highly undecidable.
» HyperLTL formulae express properties expressible using fixed finite number of traces.



Logics for traceproperties and hyperproperties

» Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc
» Retain some desirable properties of LTL, but are not purely modal logics

» Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary
» HyperLTL satisfiability is highly undecidable.

» HyperLTL formulae express properties expressible using fixed finite number of traces

» Bounded termination is not definable in HyperLTL (but is in HyperQPTL)
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» Team semantics is a candidate for a purely modal logic without the above caveat



Core of Team Semantics

» In most studied logics formulae are evaluated in a single state of affairs.
Eg.,
P a first-order assignment in first-order logic,
P a propositional assignment in propositional logic,
» a possible world of a Kripke structure in modal logic.
» In team semantics sets of states of affairs are considered.
Eg.,
P a set of first-order assignments in first-order logic,

P a set of propositional assignments in propositional logic,
P a set of possible worlds of a Kripke structure in modal logic.

» These sets of things are called teams.



Team Semantics: Historical Picture
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LTL, HyperLTL, and TeamLTL
In LTL the satisfying object is a trace: T = iff Vie T it =
pu=p|op|(pVe)| Xe|pUp

In HyperLTL the satisfying object is a set of traces and a trace assignment: 1 =7 ¢

@ = 3mp |V [ ¢
Yiu=po | 20| (W V) [ Xy [ pUD

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T,7) = ¢
pu=plopl(eVe)l(ene)| XelpU|eWe

+ new atomic statements (dependence and inclusion atoms: dep(p,q), p C q)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity



Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and synchronous
(T,i)Epiff Yte T tli](p) =1 (T,i)=—p iff Yt T:t[lij(p)=0

(T,i) EFp iff (T,j)E¢forsomej>i (T,i)E Gy iff (T,j)E¢forallj>i
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Examples: HyperLTL vs. TeamLTL

A trace-set T satisfies ¢ V 1 if it decomposed to sets 7., and T, satisfying ¢ and 1.

(T,)) =V iff (T1,i) =@ and (Ta,i) =1, forsome iU T, =T
(T,i) E Ay iff (T,i)Epand(T,i)Ey

HyperLTL: TeamLTL:

Va7’ F((ax A arr) V (b A brr)) (F o)V (Fb)
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Examples: HyperLTL vs. TeamLTL

Dependence atom dep(ps, ..., pm, q) States that py, ..., py functionally determine g:

(T.i) = dep(pr, -, pms ) iff Vet € T A elil(py) = ¢1il(py)) = (¢lil(a) = ¢i1(a)

4

TeamLTL:
(G dep(il,0)) V (G dep(i2,0))

Nondeterministic dependence: “o either depends on i1 or on i2”
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“whenever the traces agree on i1, they agree on 0”
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a ! I “whenever the traces agree on i2, they agree on 0”
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Temporal team semantics

Definition
Temporal team is (T, i), where T a set of traces and i € N.

T, Ep iff  Vte T:t[0](p) =1

T, E-p iff vVt eT:t[0](p)=0

T,VEony iff (T,)E¢and (T,i)E¢

T,NE¢vy iff (Ti,i))E¢and (T2,i) E, forsome Ty, Tost. iUT, =T
T, E X iff (T,i+1) ¢

T,i) E oUy iff Jk>ist (T,k)EvYandVm:i<m<k=(T,mE¢
T,i) E oWy iff Vk>i:(T,k)E¢orImst. i<m<kand (T,mEqvy

As usual Fp = (TUyp) and Gy = (pW.L).

TeamLTL(®, C) is the extension with the atoms and extra connectives in the brackets.



Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1,...,¢n]s for an
n-tuple (¢1,...,¢n) of LTL-formulae:

(T,i)) Eler,--venle iff {([o1](e,iys--- o [@nleiy) [t € THEB.



Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1,...,¢n]s for an
n-tuple (¢1,...,¢n) of LTL-formulae:

(T,i)) Eler,--venle iff {([o1](e,iys--- o [@nleiy) [t € THEB.

Theorem .
TeamLTL(®@,NE, A) can express all [¢1,...,¢nlB-

TeamLTL(®, A) can express all [¢1,...,¢n|B, for downward closed B.
» B is downdard closed if $; € B & 5, C 51 imply 5, € B.
> (T.0) e @u i (T.i) F g or (T.0)
> (T,i) = NEiff T £ 0.
> (T,i) EApiff (T')i) =@, forall T"C T.
> (T,0)

T.i) e Ag iff ({t},i) = ¢, forall t € T.



Complexity results

Logic | Model Checking Result

TeamLTL without V in PSPACE
k-coherent TeamLTL(~) | in EXPSPACE

left-flat TeamLTL(@,A) | in EXPSPACE

TeamLTL(C, @) ¥ 9-hard
TeamLTL(C, @,A) ¥1-hard
TeamLTL(~) complete for third-order arithmetic [Luck 2020]

Table: Complexity results.

» k-coherence: (T,i) = iff (S,i) =pforall SC T st |S| <k

1 1
» left-flatness: Restrict U and W syntactically to (AgpUv)) and (ApWe))
> ~ is contradictory negation and TeamLTL(~) subsumes all the other logics



Source of inclusion results

TeamLTL(@,A) < égVﬂHyperQPTL (assuming left-flatness)
< Elpé;VFHyperQPTLJF (general case)
N
TeamLTL(Q,NE,A) < 3, Q334 ¥ HyperQP T
IA [Luck 2020] (assuming k-coherence)
TeamLTL(~) < VAHyperLTL

Table: Expressivity results. T holds since TeamLTL(A, @) is downward closed.

» d, is a quantification of a new proposition

> Qp is quantification of new uniform propositions (unique value for each time step)

» V. is a quantification of a trace variable



Source of Undecidability

Definition
A non-deterministic 3-counter machine M consists of a list / of n instructions that
manipulate three counters C;, C,, and C,. All instructions are of the following forms:

» CF goto {j1,/2}, C; goto {j1,/2} if C; =0 goto jielse goto o,
where a € {I,m,r}, 0 < ji,/o < n.
» configuration: tuple (i,/, k, /), where 0 < i < n is the next instruction to be
executed, and j, k,/ € N are the current values of the counters C;, C,, and C,.
P> computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0,0, 0).
» computation b-recurring if the instruction labelled b occurs infinitely often in it.

» computation is lossy if the counter values can non-deterministically decrease

Theorem (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (Z(lj—comp/ete ) Z%—complete.



Undecidability results

Theorem
Model checking for TeamLTL(®, C) is ¥-hard.
Model checking for Team LTL(®, C,A) is ¥1-hard.

Proof Idea:

» reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(®, C,A)

» TeamLTL(®@, C) suffices to enforce lossy computation

» (T[i,o0],0) encodes the value of counters of the ith configuration
the value of C, is the cardinality of the set {t € T[i,o0] | t[0](cs) = 1}



Modes of asynchronicity

» Synchronous TeamLTL:
> (T,i)Ey
» Collection of traces T with one global clock /.
» Asynchronous TeamLTL:
> (T, ke
» Collection of traces T with a collection of local clocks f: T — N.
» Local clocks are completely independent.



Modes of asynchronicity

» Synchronous TeamLTL:

> (T.i) e
» Collection of traces T with one global clock /.

» Asynchronous TeamLTL:
> (T, ke
» Collection of traces T with a collection of local clocks f: T — N.
» Local clocks are completely independent.

» TeamLTL with time evaluation functions (tefs):

> (T.1) e
Collection of traces T and a tef 7: N x T — N relating a global clock to local clocks.
The behaviour of local clocks is determined by a tef.

Synchronous TeamLTL is an instance, where the tef is synchronous!

| 2
| 2
| 2
» (cf. trajectories of Bonakdarpour, Prabhakar, Sdnchez, NASA Formal Methods 2020)



Properties of tefs

Property Definition

Monotonicity VieN:7(i) <7(i+1)

Strict Monotonicity Vie N:7(i) < 7(i + 1)
Stepwiseness VieN:7()<7(i+1)<7(i)+1
*Fairness Vie NVte TIjeN:7(j,t)>i
*Non-Parallelism VieN:i=) ,r7(it)
*Synchronicity Vi,i' e NVt e T :7(i,t) =7(i,t)

Table: * are optional. (i) is the tuple (7(/, t))teT of values of local clocks at time i.



Properties of tefs

Property Definition

Monotonicity VieN:7(i) <7(i+1)

Strict Monotonicity Vie N:7(i) < 7(i + 1)
Stepwiseness VieN:7()<7(i+1)<7(i)+1
*Fairness Vie NVte TIjeN:7(j,t)>i
*Non-Parallelism VieN:i=) ,r7(it)
*Synchronicity Vi,i' e NVt e T :7(i,t) =7(i,t)

Table: * are optional. 7(i) is the tuple (7(i, t)),_, of values of local clocks at time /.

stuttering tef satisfies monotonicity

tef satisfies strict monotonicity and stepwiseness

tef is initial, if 7(0,t) =0 foreach t € T.

>

>

» synchronous tef satisfies strict monotonicity, stepwiseness, and synchronicity
>

» k-shifted tef if defined by 7[k, 00](i, t) == 7(i + k,t), forall t € T, i € N.



Team semantics with tefs

A temporal team is a pair (T,7), where T is a multiset of traces and 7 is a tef for T.
A pair (T, 7) is called a stuttering temporal team if 7 is a stuttering tef for T.

(T, 7)Ep iff Vte T:pe t[r(0,1)]

(T,7)E-p iff Vie T:pé¢t[r(0,t)]

(T, 7) E(p A7) iff (T,7)Epand (T,7) =

(T.7) E (e V) iff YT, =T:(T,7)Eeand (T2,7) 9

(T,7) = Xe iff (T,7m[1,00]) E ¢

(T,7) E [pUY] iff Jk € N such that (T, 7[k,0]) E % and
Vm:0<m< k= (T,7[mx]) E¢

(T,7) E [pWY] iff Vk e N: (T,7[k,o0]) E ¢ or

Imst. m< kand (T,7[m,0]) E ¢



Variants of TeamLTL

dTeamLTL
» T =59 if (T,7) | ¢ for some initial tef of T.
VTeamLTL
» T =y if (T,7) = ¢ for all initial tefs of T.
Synchronous TeamLTL
» T s ¢ if (T,7) | ¢ for the unique initial synchronous tef of T.



Variants of TeamLTL

JTeamLTL
» T =59 if (T,7) | ¢ for some initial tef of T.
VTeamLTL
> T =y if (T,7) = ¢ for all initial tefs of T.
Synchronous TeamLTL
» T s ¢ if (T,7) | ¢ for the unique initial synchronous tef of T.

Theorem
A formula is satisfiable in ITeamLTL iff it is satisfiable in synchronous TeamLTL.
A formula is valid in YVTeamLTL iff it is valid in synchronous TeamLTL.

Theorem
Model checking of synchronous TeamLTL reduces in linear time to the model
checking of 3TeamLTL and VTeamLTL(@,NE).



Quantifier extensions of TeamLTL
» TeamCTL* has the same syntax as CTL*:

pu=plopleVvelone | Xe|Up | oWe | Jp | Ve
The quantifiers 3 and V range over tefs:

(T,7) | Jo iff (T, 7') | ¢ for some tef 7’ of T s.t. 7/(0) = 7(0),
(T,7) EVo iff (T,7') | ¢ for all tefs 7/ of T s.t. 7/(0) = 7(0).



Quantifier extensions of TeamLTL
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» TeamCTL has the same syntax as CTL:

pu=plopleVe|leAe| Xap | Xee | eUsp | Uve | oW3p | oWy,

where U3¢ is a shorthand for JpUyp etc.



Quantifier extensions of TeamLTL
» TeamCTL* has the same syntax as CTL*:

pu=plopleVvelone | Xe|Up | oWe | Jp | Ve
The quantifiers 3 and V range over tefs:

(T,7) = 3o iff (T,7') = ¢ for some tef 7' of T s.t. 7/(0) = 7(0),
(T,7) EVo iff (T,7') | ¢ for all tefs 7/ of T s.t. 7/(0) = 7(0).

» TeamCTL has the same syntax as CTL:

pu=plopleVe|leAe| Xap | Xee | eUsp | Uve | oW3p | oWy,

where U3¢ is a shorthand for JpUyp etc.
» JTeamCTL" is the fragments of TeamCTL without the modalities {Uy, Wy, Xy}
» YTeamCTL is the fragments of TeamCTL without the modalities {U3, W3, X5}
» JTeamCTL*, YTeamCTL* are fragments of TeamCTL* without V and 3, resp.



Complexity results

Model Checking Problem for Complexity
JTeamLTL(@, C) ¥ 9-hard
VTeamLTL(®, C,NE) ¥ 9-hard
JTeamCTL*(@, Q) ¥9-hard
VTeamCTL(®@, C) ¥2-hard
JTeamCTL*(®@) ¥ 1-hard
TeamCTL*(S,ALL) for k-synchronous or k- decidable

context-bounded tefs

TeamCTL*(S) for k-synchronous or k-context- polynomial time
bounded tefs, where k and the number of traces

is fixed

Table: Complexity results overview. The ¥9-hardness results follow via embeddings of
synchronous TeamLTL, whereas the Y1-hardness truly relies on asynchronity. ALL is the set

of all generalised atoms and S = {@,NE,A,dep7 -



Summary

» General framework for temporal team semantics

> We can combine asynchronous and synchronous tefs
» We can embed synchronous TeamLTL

» highly undecidable model-checking problem

> first steps in identifying decidable fragments
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Current and future directions
» Indentification of decidable fragments and variants

» Consider tefs also as inputs given in some finite way.
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» highly undecidable model-checking problem
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» Consider tefs also as inputs given in some finite way.

Thank you!



