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Logics for verification and specification of concurrent systems

Basic setting:

I System (e.g., piece of software or hardware)
 Kripke structure depicting the behaviour of the system

I A single run of the system
 a trace generated by the Kripke structure

I A property of the system (e.g., every request is eventually granted)
 a formula of some formal language expressing the property.

Model checking:

I Check whether a given system satisfies a given specification.

SAT solving:

I Check whether a given specification (or collection of) can be realised.
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Traceproperties and hyperproperties

Opening your office computer after holidays:

Traceproperties hold in a system if each trace (in isolation) has the property:

I The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

I The computer will be ready in bounded time.
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Quantifier extensions vs. team semantics

Classical setting:

I LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems
I Traceproperty: Each request is eventually granted (properties of traces)
I Hyperproperty: Each request is granted in bounded time (properties of sets of traces)

I HyperLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.

Alternative way by using team semantics

I Temporal logics with team semantics for expressing hyperproperties
Purely modal logic & well suited for properties of unbounded number of traces.

I Expressivity: How TeamLTL variants relate to HyperLogics?
I Complexity: Where is the undecidability frontier of TeamLTL extensions?

I A large EXPTIME fragment: left-flat and downward closed logics
I Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable
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Logics for traceproperties and hyperproperties

I Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

I Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

I One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.
I LTL is decidable (PSPACE-complete model checking and satisfiability).
I FO2(≤) and FO3(≤) SAT are NEXPTIME-complete and non-elementary.

I Caveat: LTL can specify only traceproperties.
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Logics for traceproperties and hyperproperties

Recipe for logics for hyperproperties:
A logic for traceproperties  add trace quantifiers

In LTL the satisfying object is a trace: T |= ϕ iff ∀t ∈ T : t |= ϕ

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | ϕUϕ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T ϕ

ϕ ::= ∃πϕ | ∀πϕ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: ∃pϕ, ∀pϕ
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Logics for traceproperties and hyperproperties

I Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
I Retain some desirable properties of LTL, but are not purely modal logics

I Model checking for ∃∗HyperLTL and HyperLTL are PSPACE and non-elementary.
I HyperLTL satisfiability is highly undecidable.
I HyperLTL formulae express properties expressible using fixed finite number of traces.

I Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

I Team semantics is a candidate for a purely modal logic without the above caveat.
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Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.
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Team Semantics: Historical Picture
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nän
en

M
odal

D
ep

en
den

ce
Log

ic

Vää
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LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: T |= ϕ iff ∀t ∈ T : t |= ϕ

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | ϕUϕ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T ϕ

ϕ ::= ∃πϕ | ∀πϕ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T , i) |= ϕ

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | Xϕ | ϕU | ϕWϕ

+ new atomic statements (dependence and inclusion atoms: dep(~p, q), ~p ⊆ ~q)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity
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Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and synchronous

(T , i) |= p iff ∀t ∈ T : t[i ](p) = 1 (T , i) |= ¬p iff ∀t ∈ T : t[i ](p) = 0

(T , i) |= Fϕ iff (T , j) |= ϕ for some j ≥ i (T , i) |= Gϕ iff (T , j) |= ϕ for all j ≥ i



12/ 27

Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and synchronous

(T , i) |= p iff ∀t ∈ T : t[i ](p) = 1 (T , i) |= ¬p iff ∀t ∈ T : t[i ](p) = 0

(T , i) |= Fϕ iff (T , j) |= ϕ for some j ≥ i (T , i) |= Gϕ iff (T , j) |= ϕ for all j ≥ i

There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.
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Examples: HyperLTL vs. TeamLTL

A trace-set T satisfies ϕ ∨ ψ if it decomposed to sets Tϕ and Tψ satisfying ϕ and ψ.

(T , i) |= ϕ ∨ ψ iff (T1, i) |= ϕ and (T2, i) |= ψ, for some T1 ∪ T2 = T

(T , i) |= ϕ ∧ ψ iff (T , i) |= ϕ and (T , i) |= ψ
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Examples: HyperLTL vs. TeamLTL

Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:

(T , i) |= dep(p1, . . . , pm, q) iff ∀t, t ′ ∈ T
( ∧

1≤j≤m
t[i ](pj) = t ′[i ](pj)

)
⇒ (t[i ](q) = t ′[i ](q))
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Temporal team semantics

Definition
Temporal team is (T , i), where T a set of traces and i ∈ N.

(T , i) |= p iff ∀t ∈ T : t[0](p) = 1

(T , i) |= ¬p iff ∀t ∈ T : t[0](p) = 0

(T , i) |= φ ∧ ψ iff (T , i) |= φ and (T , i) |= ψ

(T , i) |= φ ∨ ψ iff (T1, i) |= φ and (T2, i) |= ψ, for some T1,T2 s.t. T1 ∪ T2 = T

(T , i) |= Xϕ iff (T , i + 1) |= ϕ

(T , i) |= φUψ iff ∃k ≥ i s.t. (T , k) |= ψ and ∀m : i ≤ m < k ⇒ (T ,m) |= φ

(T , i) |= φWψ iff ∀k ≥ i : (T , k) |= φ or ∃m s.t. i ≤ m ≤ k and (T ,m) |= ψ

As usual Fϕ := (>Uϕ) and Gϕ := (ϕW⊥).

TeamLTL(6,⊆) is the extension with the atoms and extra connectives in the brackets.
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Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [ϕ1, . . . , ϕn]B for an
n-tuple (ϕ1, . . . , ϕn) of LTL-formulae:

(T , i) |= [ϕ1, . . . , ϕn]B iff {(Jφ1K(t,i), . . . , JφnK(t,i)) | t ∈ T} ∈ B.

Theorem
TeamLTL(6,NE,

1

A) can express all [ϕ1, . . . , ϕn]B .

TeamLTL(6,
1

A) can express all [ϕ1, . . . , ϕn]B , for downward closed B.

I B is downdard closed if S1 ∈ B & S2 ⊆ S1 imply S2 ∈ B.

I (T , i) |= ϕ6 ψ iff (T , i) |= ϕ or (T , i) |= ψ

I (T , i) |= NE iff T 6= ∅.
I (T , i) |= Aϕ iff (T ′, i) |= ϕ, for all T ′ ⊆ T .

I (T , i) |=
1

Aϕ iff ({t}, i) |= ϕ, for all t ∈ T .
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Complexity results

Logic Model Checking Result

TeamLTL without ∨ in PSPACE

k-coherent TeamLTL(∼) in EXPSPACE

left-flat TeamLTL(6,
1

A) in EXPSPACE

TeamLTL(⊆,6) Σ0
1-hard

TeamLTL(⊆,6,A) Σ1
1-hard

TeamLTL(∼) complete for third-order arithmetic [Luck 2020]

Table: Complexity results.

I k-coherence: (T , i) |= ϕ iff (S , i) |= ϕ for all S ⊆ T s.t. |S | ≤ k

I left-flatness: Restrict U and W syntactically to (
1

AϕUψ) and (
1

AϕWψ)

I ∼ is contradictory negation and TeamLTL(∼) subsumes all the other logics
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Source of inclusion results

TeamLTL(6,
1

A) ≤
u

∃∗q∀πHyperQPTL (assuming left-flatness)

≤ ∃p
u

Q∗p∀πHyperQPTL+ (general case)

< †

TeamLTL(6,NE,
1

A) ≤ ∃p
u

Q∗p∃∗π∀πHyperQPTL+

≤

[Luck 2020] (assuming k-coherence)
TeamLTL(∼) ≤ ∀kHyperLTL

Table: Expressivity results. † holds since TeamLTL(
1

A,6) is downward closed.

I ∃p is a quantification of a new proposition

I
u

Q∗p is quantification of new uniform propositions (unique value for each time step)

I ∀π is a quantification of a trace variable
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Source of Undecidability

Definition
A non-deterministic 3-counter machine M consists of a list I of n instructions that
manipulate three counters Cl , Cm and Cr . All instructions are of the following forms:

I C+
a goto {j1, j2}, C−a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a ∈ {l ,m, r}, 0 ≤ j1, j2 < n.

I configuration: tuple (i , j , k, l), where 0 ≤ i < n is the next instruction to be
executed, and j , k , l ∈ N are the current values of the counters Cl , Cm and Cr .

I computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0, 0).

I computation b-recurring if the instruction labelled b occurs infinitely often in it.

I computation is lossy if the counter values can non-deterministically decrease

Theorem (Alur & Henzinger 1994, Schnoebelen 2010)

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (Σ0

1-complete) Σ1
1-complete.
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Undecidability results

Theorem
Model checking for TeamLTL(6,⊆) is Σ1

0-hard.
Model checking for TeamLTL(6,⊆,A) is Σ1

1-hard.

Proof Idea:

I reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(6,⊆,A)

I TeamLTL(6,⊆) suffices to enforce lossy computation

I (T [i ,∞], 0) encodes the value of counters of the ith configuration
the value of Ca is the cardinality of the set {t ∈ T [i ,∞] | t[0](ca) = 1}
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Modes of asynchronicity

I Synchronous TeamLTL:
I (T , i) |= ϕ
I Collection of traces T with one global clock i .

I Asynchronous TeamLTL:
I (T , f ) |= ϕ
I Collection of traces T with a collection of local clocks f : T → N.
I Local clocks are completely independent.

I TeamLTL with time evaluation functions (tefs):
I (T , τ) |= ϕ
I Collection of traces T and a tef τ : N×T → N relating a global clock to local clocks.
I The behaviour of local clocks is determined by a tef.
I Synchronous TeamLTL is an instance, where the tef is synchronous!
I (cf. trajectories of Bonakdarpour, Prabhakar, Sánchez, NASA Formal Methods 2020)
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Properties of tefs

Property Definition

Monotonicity ∀i ∈ N : τ(i) ≤ τ(i + 1)
Strict Monotonicity ∀i ∈ N : τ(i) < τ(i + 1)

Stepwiseness ∀i ∈ N : τ(i) ≤ τ(i + 1) ≤ τ(i) +~1
*Fairness ∀i ∈ N ∀t ∈ T ∃j ∈ N : τ(j , t) ≥ i
*Non-Parallelism ∀i ∈ N : i =

∑
t∈T τ(i , t)

*Synchronicity ∀i , i ′ ∈ N ∀t ∈ T : τ(i , t) = τ(i , t ′)

Table: * are optional. τ(i) is the tuple
(
τ(i , t)

)
t∈T of values of local clocks at time i .

I stuttering tef satisfies monotonicity

I tef satisfies strict monotonicity and stepwiseness

I synchronous tef satisfies strict monotonicity, stepwiseness, and synchronicity

I tef is initial, if τ(0, t) = 0 for each t ∈ T .

I k-shifted tef if defined by τ [k,∞](i , t) := τ(i + k, t), for all t ∈ T , i ∈ N.
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Team semantics with tefs

A temporal team is a pair (T , τ), where T is a multiset of traces and τ is a tef for T .
A pair (T , τ) is called a stuttering temporal team if τ is a stuttering tef for T .

(T , τ) |= p iff ∀t ∈ T : p ∈ t[τ(0, t)]

(T , τ) |= ¬p iff ∀t ∈ T : p /∈ t[τ(0, t)]

(T , τ) |= (ϕ ∧ ψ) iff (T , τ) |= ϕ and (T , τ) |= ψ

(T , τ) |= (ϕ ∨ ψ) iff ∃T1 ] T2 = T : (T1, τ) |= ϕ and (T2, τ) |= ψ

(T , τ) |= Xϕ iff (T , τ [1,∞]) |= ϕ

(T , τ) |= [ϕUψ] iff ∃k ∈ N such that (T , τ [k,∞]) |= ψ and

∀m : 0 ≤ m < k ⇒ (T , τ [m,∞]) |= ϕ

(T , τ) |= [ϕWψ] iff ∀k ∈ N : (T , τ [k,∞]) |= ϕ or

∃m s.t. m ≤ k and (T , τ [m,∞]) |= ψ
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Variants of TeamLTL

∃TeamLTL

I T |=∃ ϕ if (T , τ) |= ϕ for some initial tef of T .

∀TeamLTL

I T |=∀ ϕ if (T , τ) |= ϕ for all initial tefs of T .

Synchronous TeamLTL

I T |=s ϕ if (T , τ) |= ϕ for the unique initial synchronous tef of T .

Theorem
A formula is satisfiable in ∃TeamLTL iff it is satisfiable in synchronous TeamLTL.
A formula is valid in ∀TeamLTL iff it is valid in synchronous TeamLTL.

Theorem
Model checking of synchronous TeamLTL reduces in linear time to the model
checking of ∃TeamLTL and ∀TeamLTL(6,NE).
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Quantifier extensions of TeamLTL
I TeamCTL∗ has the same syntax as CTL∗:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕWϕ | ∃ϕ | ∀ϕ

The quantifiers ∃ and ∀ range over tefs:

(T , τ) |= ∃ϕ iff (T , τ ′) |= ϕ for some tef τ ′ of T s.t. τ ′(0) = τ(0),

(T , τ) |= ∀ϕ iff (T , τ ′) |= ϕ for all tefs τ ′ of T s.t. τ ′(0) = τ(0).

I TeamCTL has the same syntax as CTL:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | X∃ϕ | X∀ϕ | ϕU∃ϕ | ϕU∀ϕ | ϕW∃ϕ | ϕW∀ϕ,

where ϕU∃ϕ is a shorthand for ∃ϕUϕ etc.

I ∃TeamCTL∗ is the fragments of TeamCTL without the modalities {U∀,W∀,X∀}
I ∀TeamCTL is the fragments of TeamCTL without the modalities {U∃,W∃,X∃}
I ∃TeamCTL∗, ∀TeamCTL∗ are fragments of TeamCTL∗ without ∀ and ∃, resp.
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Complexity results

Model Checking Problem for Complexity

∃TeamLTL(6,⊆) Σ0
1-hard

∀TeamLTL(6,⊆,NE) Σ0
1-hard

∃TeamCTL∗(6,⊆) Σ0
1-hard

∀TeamCTL(6,⊆) Σ0
1-hard

∃TeamCTL∗(6) Σ1
1-hard

TeamCTL∗(S,ALL) for k-synchronous or k-
context-bounded tefs

decidable

TeamCTL∗(S) for k-synchronous or k-context-
bounded tefs, where k and the number of traces
is fixed

polynomial time

Table: Complexity results overview. The Σ0
1-hardness results follow via embeddings of

synchronous TeamLTL, whereas the Σ1
1-hardness truly relies on asynchronity. ALL is the set

of all generalised atoms and S = {6,NE,
1

A, dep,⊆}.
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I General framework for temporal team semantics

I We can combine asynchronous and synchronous tefs

I We can embed synchronous TeamLTL

I highly undecidable model-checking problem

I first steps in identifying decidable fragments

Current and future directions

I Indentification of decidable fragments and variants

I Consider tefs also as inputs given in some finite way.
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