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What do we do?

I Multiteam semantics: Shift from (set) teams to their multiset analogues.
I Probabilistic atoms:

I Probabilistic inclusion atom.
I Probabilistic conditional independence atom.
I Probabilistic marginal independence atom.

I Basic properties of logics with the above ingredients.

I Approximate operators inspired by approximate dependence atoms by
Väänänen.

I Complexity of model checking with the approximate operator.
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From teams to multiteams

I Multiset is a pair (A,m), where A is a set and m : A→ N a function.

I Team is set X of assignments s : VAR → A with a common domain.

I Multiset (X ,m) is a multiteam whenever X is a team.

For multisets (A,m), we define the canonical set representative as follows

[(A,m)]cset := {(a, i) | a ∈ A, 0 < i ≤ m(a)}.
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Multiteam semantics

I Replace structures by multistructures
I Domains are multisets.
I Relations are over the underlining set domains.
I (The same effect as replacing identity by a equivalence relation that respects

relations in the vocabulary)

I Replace teams by multiteams.

I Semantics is defined like team semantics but with canonical set
representatives.
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Multiteam semantics cont.

(X ,m) a multiteam and (A, n) a finite multiset.

I (A,m) ] (B, n) denotes the disjoint union of (A,m) and (B, n).

I P+
(
(A,m)

)
is the set of non-empty submultisets of (A,m).

I For universal quntifier, define (X ,m)[(A, n)/x ] as⊎
s∈X

⊎
a∈A
{
(
s(a/x),m(s) · n(a)

)
}.

I For existential quantifier, define X [F/x ] as⊎
s∈X

⊎
1≤i≤m(s)

{
(
s(b/x), l(b)

)
| (B, l) = F

(
(s, i)

)
, b ∈ B},

where F : [(X ,m)]cset → P+
(
(A, n)

)
a function.
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Multiteam semantics cont.

Definition (Multiteam semantics)

A a τ -multistructure, (A, n) the domain of A, and (X ,m) a multiteam over A.

A |=(X ,m) x = y ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) = s(y)
A |=(X ,m) x 6= y ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) 6= s(y)
A |=(X ,m) R(~x) ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(~x) ∈ RA

A |=(X ,m) ¬R(~x) ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(~x) 6∈ RA

A |=(X ,m) (ψ ∧ θ) ⇔ A |=(X ,m) ψ and A |=(X ,m) θ

A |=(X ,m) (ψ ∨ θ) ⇔ A |=(Y ,k) ψ and A |=(Z ,l) θ for some multisets
(Y , k), (Z , l) ⊆ (X ,m) s.t. (X ,m) ⊆ (Y , k) ] (Z , l).

A |=(X ,m) ∀xψ ⇔ A |=(X ,m)[(A,n)/x] ψ

A |=(X ,m) ∃xψ ⇔ A |=(X ,m)[F/x] ψ holds for some function
F : [(X ,m)]cset → P+

(
(A, n)

)
.
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Strict multiteam semantics

The so-called strict multiteam semantics is obtained from the previous definition
by adding the following two requirements.

(i) Disjunction: (Y , n) ] (Z , k) = (X ,m).

(ii) Existential quantification: for all s ∈ X and 0 < i ≤ m(s),
F
(
(s, i)

)
= (B, n) for some singleton B = {b} and n(b) = 1.
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Multiteam semantics extends team semantics

Proposition

A a multistructure with domain (A, n), and (X ,m) a multiteam over A such
that n(a) = m(s) = 1 for all a ∈ A and s ∈ X . Define B := (A, (RA)R∈τ ). Then
for every ϕ ∈ FO it holds that

A |=(X ,m) ϕ if and only if B |=X ϕ.
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Probabilistic inclusion atom

(X ,m)~x=~a is the multiteam (X , n) where n agrees with m on all assignments
s ∈ X with s(~x) = ~a, and otherwise n maps s to 0.

If ~x , ~y are variable sequences of the same length, then ~x ≤ ~y is a probabilistic
inclusion atom with the following semantics:

A |=(X ,m) ~x ≤ ~y
iff |(X ,m)~x=~s(~x)| ≤ |(X ,m)~y=s(~x)| for all s : Var(~x)→ A.
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Probabilistic interpretation

Multiteams (X ,m) induce a natural probability distribution p over the
assignments of X . Namely, we define p : X → [0, 1] such that

p(s) =
m(s)∑
s∈X m(s)

.

The probability that a tuple of (random) variables ~x takes value ~a, written
Pr(~x = ~a), is then ∑

s∈X ,
s(~x)=~a

p(s).

The probabilistic inclusion atom ~x ≤ ~y indicates that Pr(~x = ~a) ≤ Pr(~y = ~a) for
all values ~a. However in the finite Pr(~x = ~a)= Pr(~y = ~a) follows.



Approximation and
Dependence

via Multiteam
Semantics

Jonni Virtema

Outline

Multiteams

Multiteam
sematics

Probabilistic atoms

Familiar atoms

Locality and
flattness

10/ 18

Probabilistic interpretation

Multiteams (X ,m) induce a natural probability distribution p over the
assignments of X . Namely, we define p : X → [0, 1] such that

p(s) =
m(s)∑
s∈X m(s)

.

The probability that a tuple of (random) variables ~x takes value ~a, written
Pr(~x = ~a), is then ∑

s∈X ,
s(~x)=~a

p(s).

The probabilistic inclusion atom ~x ≤ ~y indicates that Pr(~x = ~a) ≤ Pr(~y = ~a) for
all values ~a. However in the finite Pr(~x = ~a)= Pr(~y = ~a) follows.



Approximation and
Dependence

via Multiteam
Semantics

Jonni Virtema

Outline

Multiteams

Multiteam
sematics

Probabilistic atoms

Familiar atoms

Locality and
flattness

10/ 18

Probabilistic interpretation

Multiteams (X ,m) induce a natural probability distribution p over the
assignments of X . Namely, we define p : X → [0, 1] such that

p(s) =
m(s)∑
s∈X m(s)

.

The probability that a tuple of (random) variables ~x takes value ~a, written
Pr(~x = ~a), is then ∑

s∈X ,
s(~x)=~a

p(s).

The probabilistic inclusion atom ~x ≤ ~y indicates that Pr(~x = ~a) ≤ Pr(~y = ~a) for
all values ~a. However in the finite Pr(~x = ~a)= Pr(~y = ~a) follows.



Approximation and
Dependence

via Multiteam
Semantics

Jonni Virtema

Outline

Multiteams

Multiteam
sematics

Probabilistic atoms

Familiar atoms

Locality and
flattness

11/ 18

Probabilistic independence

The objective is that that A |=(X ,m) ~y ⊥⊥~x ~z iff for all ~a~b~c,

Pr(~y = ~b, ~z = ~c |~x = ~a) = Pr(~y = ~b|~x = ~a) Pr(~z = ~c|~x = ~a),

that is, the probability of ~y = ~b is independent of the probability of ~z = ~c , given
~x = ~a.
Formally: ~y ⊥⊥~x ~z is a probabilistic conditional independence atom, defined by

A |=(X ,m) ~y ⊥⊥~x ~z

if for all s : Var(~x~y~z)→ A it holds that

|(X ,m)~x~y=s(~x~y)| · |(X ,m)~x~z=s(~x~z)| = |(X ,m)~x~y~z=s(~x~y~z)| · |(X ,m)~x=s(~x)|.
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Non-probabilistic atoms

One can also study the usual dependency notions in the multiteam semantics:

Definition

Let A be a multistructure, (X ,m) a multiteam over A, and ϕ of the form
=(~x , ~y), ~x ⊆ ~y , or ~y ⊥~x ~z .

A |=(X ,m) ϕ iff A |=X+ ϕ,

where X+ is the team {s ∈ X | m(s) ≥ 1}.
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Connections between atoms

I Probabilistic independence atom of the form ~x ⊥⊥ ~x that Pr(~x = ~a) = 1 for
some value ~a.

I Probabilistic ~y ⊥⊥~x ~y is equivalent with the non-probabilistic =(~x , ~y).

I Marginal indepenence ~x ⊥⊥ ~x is equivalent with constancy atom =(~x).
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Connections between atoms cont.

It was shown by Wong 1997 that the generalised multivalued dependency
~x (→ ~y holds in an extended relational data model if and only if the underlying
relational model satisfies the multivalued dependency ~x � ~y . This is stated in
the following theorem reformulated into our framework.

Theorem

Let A be a multistructure, X a team over A, and ~y ⊥⊥~x ~z a probabilistic
conditional independence atom such that Var(~y ⊥⊥~x ~z) = Dom(X ) and ~x , ~y , ~z
are pairwise disjoint. Let 1 denote the constant function that maps all
assignments of X to 1. Then A |=(X ,1) ~y ⊥⊥~x ~z iff A |=(X ,1) ~y ⊥~x ~z .

The restriction that ~x , ~y , ~z are disjoint can be now removed.
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Locality in multiteams

For V ⊆ Dom(X ), we define (X ,m) � V := (X � V , n) where

n(s) :=
∑
s′∈X ,
s′�V=s

m(s ′).

The following locality principle holds by easy structural induction.

Proposition (Locality)

Let A be a multistructure, (X ,m) a multiteam, and V a set of variables such
that Fr(ϕ) ⊆ V ⊆ Dom(X ). Then for all ϕ ∈ FO(≤,⊥⊥c,=(·) ,⊆,⊥c) it holds
that A |=(X ,m) ϕ iff A |=(X ,m)�V ϕ.
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Flattness in multiteams

Definition (Weak flatness)

We say that a formula ϕ is weakly flat if for all multistructures A and for all
multiteams (X ,m) it holds that

A |=(X ,m) ϕ ⇔ A |=(X ,n) ϕ,

where n agrees with m on all s with m(s) = 0, and otherwise maps all s to 1.
The multiteam (X , n) is then called the weak flattening of (X ,m). A logic is
called weakly flat if every formula of this logic is weakly flat.

Dependence, conditional independence, and inclusion atoms are insensitive to
multiplicities:

Proposition

FO(=(·) ,⊆,⊥c) is weakly flat.
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Union closure in multiteam semantics

A formula ϕ is union closed (in multiteam setting) if

(A |=(X ,m) ϕ and A |=(Y ,n) ϕ) ⇒ A |=(Z ,h) ϕ, where (Z , h) = (X ,m) ] (Y , n).

Proposition

FO(≤,⊆) is union closed.



Approximation and
Dependence

via Multiteam
Semantics

Jonni Virtema

Outline

Multiteams

Multiteam
sematics

Probabilistic atoms

Familiar atoms

Locality and
flattness

18/ 18

Strict semantiics

Proposition

Over strict multiteam semantics FO(=(·)) is weakly flat.

The logics FO(⊥c) and FO(⊆) are not weakly flat under strict multiteam
semantics as shown in the next example.
Similarly, one can show that FO(≤,⊆) is not union closed under strict
multiteam semantics. Moreover one can show that locality hold also under strict
multiteam semantics.
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