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Descriptive complexity of...

I Offers a machine independent description of complexity classes:
I Time/Space used by a machine to decide a problem
⇒ richness of the logical language needed to describe the problem.

I Complexity classes can/could be then separated by separating logics.

I Many characterisations are known:
I Fagin’s Theorem 1973: Existential second-order logic characterises NP.
I Immerman 1980s: First-order logic characterises AC0 and constant time CRAM.
I Immerman & Vardi 1980s: Least fixed point logic LFP characterises P on ordered

structures.
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...complexity of real computation...

I Turing machines read bit-strings and thus recognize subsets of {0, 1}∗.
I Claim: Today and in the future handling of numerical data is essential.

I Turing machines can only deal with binary representations of numerical data.
I Large numbers require more space to encode.
I The cost of doing arithmetic depends on the sizes of encodings.

I One alternative is to compute with numerical data directly.
I Large numbers do not require more space to write than small numbers.
I The cost of doing arithmetic is independent on the size of numbers.

I Motivation:
I Symbolic computation.
I Analogue computation (e.g., hardware implementation of neuromorphic computing).
I Some other reason to abstract away the sizes of numerical datavalues.
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Reals vs. rationals vs. integers

I If we have numerical data, we surely want to use some arithemetic.

I Hilbert’s 10th problem answered by Yuri Matiyasevich in 1970:
It is undecidable to decide whether a polynomial equation with integer coefficients
have integer solutions.

I Hilbert’s 10th problem w.r.t rational solutions is open.
First-order theory of rational arithmetic is undecidable (Julia Robinson, 1949).

I Hilbert’s 10th problem w.r.t real solutions is decidable.
First-order theory of real arithmetic is decidable (Alfred Tarski, 1951).

I The complexity class ∃R is the closure of the existential theory of the reals under
polynomial-time reductions, and NP ≤ ∃R ≤ PSPACE (John F. Canny, 1988).
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R-structures

R-structures [Grädel and Meer, 1995] consist of a finite structure A together with an
ordered field of reals and a finite set of weight functions from A to R

(particular case of metafinite structures [Grädel and Gurevich, 1998])
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Blum-Shub-Smale machines

Input: finite string of reals
Output: 0 or 1 (decision problems)

A program is a finite list of instructions:

I Arithmetic instructions:
xi ← (xj + xk), xi ← (xj − xk),
xi ← (xj × xk), xi ← c .

I Shift left or right.

I Branch on inequality
if x0 ≤ 0 then go to α; else go to β.

r1 r2 r3 r4 r5 r6 r7 r8 r9

Addition: [2] := [-3]+[0]

r1 r2 r3 r4 r5 r6 r2+r5 r8 r9



Nondeterministic BSS

Nondeterminism is implemented by guessing a certificate:

L ∈ NPR
there exists a BSS machine M s.t.
x ∈ L iff ∃y ∈ R∗ s.t. M accepts (x , y) in polynomial time in |x |.

Example NPR-complete problem: Is there a real root for a polynomial of degree 4?



Descriptive complexity over the reals

Theorem ([Grädel and Meer, 1995])

ESOR[+,×,≤, (r)r∈R]≡ NPR

Two-sorted variant of ESO with

1. first-order logic on the finite structure A

2. existential quantification of functions from A to reals

3. constants r for each real

4. complex numerical terms by {+,×}
5. (negated) inequality ≤ between numerical terms



Descriptive complexity of real computation
and probabilistic team semantics



Logics of dependence and independence

Recipe for modern logics for dependence and independence:

Base logic

First-order

Modal

Propositional

New atoms

Dependence

Independence

Inclusion

Historical predecessors: First-order logic + richer quantification of variables

I Partially ordered quantifiers [Henkin, 1961]

I Independence-friendly logic [Hintikka and Sandu, 1989]



Qualitative vs. quantitative dependence

Modern logics of dependence can reason both about qualitative (relational) and
quantitative (probabilistic) dependencies?

Qualitative:

Functional dependency X → Y

Multivalued dependency X � Y

Inclusion dependency X ⊆ Y

Quantitative:

Marginal independence X ⊥⊥ Y

Conditional independence
X ⊥⊥ Y | Z

Identical distribution of X and Y



Team semantics

Compositional semantics for complex dependence statements by team semantics
[Hodges, 1997]

Team = set of objects (assignments, possible worlds, Boolean assignments)

Employee Department Salary

Alice Math 50k
Bob CS 40k

Carol Physics 60k
David Math 80k

New atoms = basic dependence statements about teams
(e.g, Employee determines Salary)

{∀,∃,2,3,∧,∨} for complex dependence statements



Probabilistic team semantics

Basic concepts:

I Probabilistic team = probability distribution on a finite team (FoIKS 2018)

I Quantitative atoms (e.g., conditional independence, identical marginal distributions)

I {∀,∃,∧,∨} for complex probability statements

x0 x1 x2 x3 x4 x5

s0
4

9

3

9

2

9

s1

4

9

3

9

2

9
s2

4

9

3

9

2

9



Reasoning about dependencies

Dependence and independence pivotal notions in many areas (databases, social choice,
quantum foundations, ...)

Team logics can be used to express and formally prove results in these fields

I Arrow’s theorem [Pacuit and Yang, 2016]

I Bell’s theorem [Hyttinen et al., 2015]

I Implication problems for data dependencies [Hannula and Kontinen, 2016]

No “general” proof system: validity problem usually non-arithmetical.



Example
thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

alarm

thief,cat T F

TT 0.9 0.1
TF 0.8 0.2
FT 0.1 0.9
FF 0 1

From the Bayesian network above we obtain that the joint probability distribution for
t, c , g , a can be factorized as

P(t, c , g , a) = P(t) · P(c | t) · P(g | t, c) · P(a | t, c)
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If additionally we have
φ := t = F → g = F

(i.e., guard never raises alert in absence of thief), the two bottom rows of the
conditional probability table for guard become superfluous.



Example
thief cat

guard alarm

thief

T F

0.1 0.9

cat

thief T F

T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

alarm

thief,cat T F

TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

Given
φ := tca ≈ tcg

(i.e., conditioned on thief and cat, alarm and guard are identically distributed),
then the conditional probability tables for alarm and guard are identical and one of
them can be removed.



Probabilistic inclusion logic FO(≈) and independence logic FO(⊥⊥c)

Syntax: FO (negation normal form) + ~x ≈ ~y (only positively)
FO (negation normal form) + ~y ⊥⊥~x ~z (only positively)

Semantics: Defined in terms of a finite structure A and a probabilistic team X
(1) Team = a set of variable assignments with a shared domain

(2) Probabilistic team = a pair X = (X , p), where X is a finite team and
p : X → [0, 1] is a probability distribution



Semantics of (probabilistic) dependencies

Let X = (X , p) be a probabilistic team and ~x , ~a be tuples of variables and values.

|X|~x=~a :=
∑
s∈X

s(~x)=~a

p(s)

The semantics of marginal identity atoms (identical distribution) ~x ≈ ~y :

A |=X ~x ≈ ~y iff |X|~x=~a = |X|~y=~a, for each ~a ∈ Ak



Semantics of (probabilistic) dependencies

Let X = (X , p) be a probabilistic team and ~x , ~a be tuples of variables and values.

|X|~x=~a :=
∑
s∈X

s(~x)=~a

p(s)

The semantics of probabilistic conditional independence atoms ~y ⊥⊥~x ~z :

A |=X ~y ⊥⊥~x ~z iff, for all assignments s for ~x , ~y , ~z

|X|~x~y=s(~x~y) · |X|~x~z=s(~x~z) = |X|~x~y~z=s(~x~y~z) · |X|~x=s(~x)



Semantics of first-order part I

Definition (FoIKS 2018)

Let A be a finite structure and X = (X , p) a probabilistic team.

A |=X ` ⇔ A |=s ` for all s ∈ X such that p(s) > 0

(when ` is a first-order literal)

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ



Semantics of first-order part II

Disjunction via convex combinations:

A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ,

where X = α · Y + (1− α) · Z, for some α ∈ [0, 1].

s0

s1

s2

Y
Z

Z

Z
Y

NB. The empty set is considered as a probabilistic team.



Semantics of first-order part III

Quantification introduces a new column:

A |=X ∀xψ ⇔ A |=X[A/x] ψ

A |=X ∃xψ ⇔ A |=X′ ψ, for some X′ such that X′ � Dom(X) = X

s0

s1

s2

si (a/x)

A→ { 1

|A|
}

A→ { 1

|A|
}

A→ { 1

|A|
}

s0

s1

s2

si (a/x)

X[A/x ] X′



Descriptive complexity and team semantics

Descriptive complexity in team logics:

I Independence logic FO(⊥c) equi-expressive to ESO =⇒ captures NP.

I Inclusion logic FO(⊆) equi-expressive to positive greatest fixed point-logic =⇒
captures P on ordered structures [Galliani and Hella, 2013].



Descriptive complexity and team semantics

Descriptive complexity in team logics:

I Independence logic FO(⊥c) equi-expressive to ESO =⇒ captures NP.

I Inclusion logic FO(⊆) equi-expressive to positive greatest fixed point-logic =⇒
captures P on ordered structures [Galliani and Hella, 2013].

Descriptive complexity in probabilistic team logics:

I Sentences ∼ finite structures ∼ strings of Booleans

I Formulae ∼ probabilistic teams ∼ strings of reals
Here we venture to the realm of BSS-computing.



Expressivity over sentences

FO(⊆) FO(⊆,dep(· · · ))=
o
rd

=

P ⊆ NP ⊆ PSPACE

=

FO(⊥c)

Table: Team semantics

FO(≈) FO(≈,dep(· · · )) FO(⊥⊥c)=
∗o
rd

=
∗

=
†

P ⊆ NP ⊆ ∃[0, 1]≤ ⊆ ∃R ⊆ PSPACE

Table: Probabilistic team semantics. † LICS 2020, * arXiv 2020



Expressivity over formulae

FO(⊆) ( FO(⊆, dep(· · · )) ≡ FO(⊥c)

Table: Team semantics

FO(≈) (∗ FO(≈, dep(· · · )) († FO(⊥⊥c)

Table: Probabilistic team semantics. * JELIA 2019, † arXiv 2020

Descriptive complexity of formulae:

I FO(⊥⊥c) ≡ S-NP0
[0,1] (LICS 2020)

I FO(≈,dep(· · · )) ⊆ additive S-NP0
[0,1] (arXiv 2020 + conjecture)

I FO(≈) ⊆ additive S-P0
[0,1] (arXiv 2020 + conjecture)
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Existential second-order logics on R-structures
that capture probabilistic team logics.



BSS machines and logics on R-structures cont.

Theorem ([Grädel and Meer, 1995])

ESOR[+,×,≤, (r)r∈R]≡ NPR

Two-sorted variant of ESO with

1. first-order logic on the finite structure A

2. existential quantification of functions from A to reals

3. constants r for each real

4. complex numerical terms by {+,×}
5. inequality ≤ between numerical terms

Too strong for FO(⊥⊥c): 1) Lacks negation, 2) Quantification over [0, 1]



S-BSS model of computation

Blum-Shub-Smale machines (1989)

Input: finite string of reals
Output: 0 or 1 (decision problems)

A program is a finite list of instructions:

I Arithmetic instructions:
xi ← (xj + xk), xi ← (xj − xk),
xi ← (xj × xk), xi ← c .

I Shift left or right.

I Branch on inequality
if x0 ≤ 0 then go to α; else go to β.

Separate branching BSS-machines

Input: finite string of reals
Output: 0 or 1 (decision problems)

Instead of branch on inequality:
I Separate branch on inequality

(ε− < ε+ are real numbers):

if x0 ≤ ε− then go to α;
else if x0 ≥ ε+ then go to β;
else reject.



Nondeterministic S-BSS computations

Nondeterminism is implemented by guessing a certificate from [0, 1]:

L ∈ S-NP[0,1]
there exists an S-BSS machine M s.t.
x ∈ L iff ∃y ∈ [0, 1]∗ s.t. M accepts (x , y) in polynomial time in |x |

L ∈ NPR
there exists a BSS machine M s.t.
x ∈ L iff ∃y ∈ R∗ s.t. M accepts (x , y) in polynomial time in |x |



Expressive power of FO(⊥⊥c)

Descriptive complexity of FO(⊥⊥c) in real computation:

Theorem (LICS 2020)

FO(⊥⊥c) ≡ L-ESO[0, 1][+,×,≤] ≡ S-NP0
[0,1]

I “Loose fragment”: no negated atoms ¬i ≤ j between two numerical terms

I Existential second-order quantification over functions from Dom(A) to [0, 1]

I Superscript 0: only machine constants 0 and 1 allowed

NB. The result holds for formulae of FO(⊥⊥c)



Expressive powers of FO(≈) and FO(≈, dep(· · · ))

Theorem (arXiv 2020)

FO(≈,dep(· · · )) ≡ L-ESO[0,1][+,≤, 0, 1]

FO(≈) ≡ almost conjunctive L-(∃̈∗∀∗)d[0,1][SUM,≤, 0, 1]



Separation of BSS and S-BSS computation

Theorem ([Blum et al., 1989])

Every language decidable by a (deterministic) BSS machine is a countable disjoint
union of semi-algebraic sets.

Theorem (LICS 2020)

Every language decidable by

I a deterministic S-BSS machine, or

I a time bounded [0, 1]-nondeterministic S-BSS machine

is a countable disjoint union of closed sets in Rn.



Separation of BSS and S-BSS computation

Theorem (LICS 2020)

Every language decidable by

I a deterministic S-BSS machine, or

I a time bounded [0, 1]-nondeterministic S-BSS machine

is a countable disjoint union of closed sets in Rn.

Proof.
I The set of strings s ∈ Rn accepted by an S-BSS machine M in time (at most) t

can be described by an L-EFO[0,1] formula in (R,+,×,≤, 0, 1).

I Every n-ary relation defined by some L-EFO[0,1] formula is closed in Rn.



Separation of BSS and S-BSS computation

Theorem (LICS 2020)

Every language decidable by

I a deterministic S-BSS machine, or

I a time bounded [0, 1]-nondeterministic S-BSS machine

is a countable disjoint union of closed sets in Rn.

Theorem (LICS 2020)

S-NP[0,1] < NPR



Main result: FO(⊥⊥c) and real computation cont.

This separation holds also wrt. machines with constants 0, 1

Descriptive complexity of FO(⊥⊥c) thus strictly below NP0
R:

Corollary

FO(⊥⊥c) ≡ S-NP0
[0,1] < NP0

R

Scope of corollary: formulae of FO(⊥⊥c)

What about sentences of FO(⊥⊥c)?



Existential theory of the reals

I The existential theory of the reals consists of all true sentences of the form

∃x1, . . .∃xnψ(x1, . . . xn)

where ψ is a quantifier-free formula of the real arithmetic

I Gives rise to the Boolean complexity class ∃R:
the closure of the existential theory of the reals under polynomial-time reductions

I NP ≤ ∃R ≤ PSPACE

I Many natural geometric and algebraic problems are complete for ∃R, such as the
art gallery problem or recognition of unit distance graphs



Existential theory of the reals and BSS machines

Theorem ([Bürgisser and Cucker, 2006, Grädel and Meer, 1995,
Schaefer and Stefankovic, 2017])

∃R ≡ BP(NP0
R)≡ ESOR[+,×,≤]

NPR restricted to Boolean inputs and with machine constants 0, 1

Too strong for sentences of FO(⊥⊥c)?



Main result 2 – FO(⊥⊥c) and Boolean computation

Define ∃[0, 1]≤ to be the fragment of ∃R obtained by closing the true sentences of the
existential theory of the reals of the form

∃x1 . . . ∃xn
( ∧

1≤i≤n
0 ≤ xi ∧ xi ≤ 1 ∧ ψ

)
,

where ψ does not contain ¬ nor <, by polynomial-time reductions.

(Cf. L-ESO[0,1][+,× ≤] vs. ESOR[+,× ≤] )

Theorem
Over finite structures, FO(⊥⊥) ≡ ∃[0, 1]≤.

Open question: Does ∃[0, 1]≤ coincide with NP or ∃R?
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Probabilistic independence and existential theory of the reals

I The existential theory of the reals consists of all true sentences of the form

∃x1, . . .∃xnψ(x1, . . . xn)

where ψ is a quantifier-free formula of the real arithmetic

I Gives rise to the Boolean complexity class ∃R:
the closure of the existential theory of the reals under polynomial-time reductions

I ∃[0, 1]≤ defined as ∃R but in terms of sentences of the form

∃x1 . . . ∃xn
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1≤i≤n
0 ≤ xi ∧ xi ≤ 1 ∧ ψ

)
,

where ψ does not contain ¬ nor <.

Theorem (LiCS 2020)

Over finite structures, FO(⊥⊥c) ≡ ∃[0, 1]≤.
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Probabilistic inclusion logic over sentences

Lemma
Let φ ∈ FO(≈) be a sentence. There is a polynomial-time reduction from finite
structures A to systems of linear inequations S such that A |= φ if and only if S has a
solution.

Proof.
Sketch. Add a variable xs,ψ, for any partial assignment s and any subformula ψ of φ.
Initialize S with x∅,φ = 1, and xψ,s ≥ 0 for all s and ψ. For each ψ add a set of
equations to describe its corresponding team operation. E.g., for disjunction weights of
assignments are split to two:

I If ψ is θ ∨ θ′, add xs,θ + xs,θ′ = xs,ψ for all s.

Deciding whether a system of linear inequalities has solutions is in polynomial time

Theorem
Let φ ∈ FO(≈) be a sentence. The problem of determining whether A |= φ for a given
finite structure A is in P.



From inclusion to probabilistic inclusion logic

Theorem
Every sentence of FO(⊆) is equivalent to a sentence of FO(≈).

Proof.
Inclusion atoms definable in terms of equiextension atoms
~x1 ./ ~x2 := ~x1 ⊆ ~x2 ∧ ~x2 ⊆ ~x1 [Galliani, 2012]. However, ~x1 ≈ ~x2 6≡ ~x1 ./ ~x2 as
equiextension may hold even if the weights are not in balance.

Proof idea. First balance all positive weights, then apply ≈:

∀c∀~u∃v1v2∀z ′1 . . . ∀z ′k∃z1 . . . ∃zk(
∧

i=1,2

~xi = ~u ↔ vi = c ∧ (1)

k∧
i=1

z ′i = c → zi = c ∧ (¬~z = ~c ∨ ~uv1 ≈ ~uv2)),

where k is the number of “splits” (from quantification, disjunction) in the underlying
sentence.



Probabilistic inclusion logic over sentences cont.

Theorem
FO(≈) corresponds to P over finite ordered structures.

Proof.

1. Over finite structures: FO(⊆) ⊆ FO(≈) ⊆ P

2. Over finite ordered structures: P ≡ FO(⊆) [Galliani and Hella, 2013]

Future work:

1. FO(⊆) strictly subsumed by FO(≈) (over arbitrary finite structures)?

2. Relationship between FO(≈) and fixed-point logic/inclusion logic with counting?
Cf. [Grädel and Hegselmann, 2016]



Probabilistic inclusion/dependence logic over sentences

Results via R-structures and Blum-Shub-Smale machines

R-structures [Grädel and Meer, 1995] consist of a finite structure A together with an
ordered field of reals and a finite set of weight functions from A to R

(particular case of metafinite structures [Grädel and Gurevich, 1998])

Helsinki
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Sapporo

1594

223

8832

7172

1665

8734



Blum-Shub-Smale machines

Input: finite string of reals
Output: 0 or 1 (decision problems)

A program is a finite list of instructions:

I Arithmetic instructions:
xi ← (xj + xk), xi ← (xj − xk),
xi ← (xj × xk), xi ← c .

I Shift left or right.

I Branch on inequality
if x0 ≤ 0 then go to α; else go to β.

r1 r2 r3 r4 r5 r6 r7 r8 r9

Addition: [2] := [-3]+[0]

r1 r2 r3 r4 r5 r6 r2+r5 r8 r9



Descriptive complexity over the reals

Theorem ([Grädel and Meer, 1995])

ESOR[+,×,≤, (r)r∈R]≡ NPR

Two-sorted variant of ESO with

1. first-order logic on the finite structure A

2. existential quantification of functions from A to reals

3. constants r for each real

4. complex numerical terms by {+,×}
5. (negated) inequality ≤ between numerical terms

Too strong for FO(≈, dep(· · · )): 1) Lacks ¬, ×, and real constants 2) Quantification
over [0, 1]
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Probabilistic inclusion/dependence vs. additive ESO over the reals

We show (adapting techniques from [FoIKS 2018]):

Theorem
FO(≈,dep(· · · )) ≡ L-ESO[0, 1][+,≤, 0, 1]

I “Loose fragment”: no negated atoms ¬i ≤ j between two numerical terms

I Existential second-order quantification over functions from Dom(A) to [0, 1]

I Only constants 0, 1 allowed

NB. The result holds for formulae of FO(≈, dep(· · · ))



Probabilistic inclusion/dependence logic over sentences cont.

Theorem
Over finite structures, FO(≈, dep(· · · )) ≡ NP.

Proof.
⊇ Over finite structures: NP ⊆ FO(dep(· · · )) ⊆ FO(≈,dep(· · · ))

⊆ It is easy to show that over formulae:

FO(≈,dep(· · · )) ⊆ ESOR[≤,+, 0, 1] ⊆ NP0
add.

NP0
add allows guessing a string of reals and then verifying in polynomial time in the

additive Blum-Shub-Smale model of computation (with machine constants 0, 1).

It suffices to show that NP0
add collapses to NP over Boolean inputs.



Collapse of additive NP over the reals

Theorem
Over Boolean inputs, NP0

add = NP

Proof.
Sketch. ⊇ trivial. ⊆ Suppose L ⊆ {0, 1}∗ ∩ NP0

add is decided non-deterministically by a

BSS machine M whose running is bounded by some polynomial p. Let x ∈ {0, 1}n be an input.
First, guess the outcome of each comparison of the BSS computation; the outcome is a
Boolean string z of length p(n). During a computation the value of each coordinate xi is a
linear function on the constants 0 and 1, the input x , and the real guess y of length p(n).
Thus it is possible to construct in polynomial time a system:

p(n)∑
j=1

aijyj ≤ 0 (1 ≤ i ≤ m),

p(n)∑
j=1

bijyj < 0 (1 ≤ i ≤ l), aij , bij ∈ Z (2)

such that y is a (real-valued) solution iff M accepts (x , y) wrt. z .



Formulae vs. sentences

This paper: logical, computational, axiomatic properties of FO(≈) and
FO(≈,dep(· · · ))

Two levels of analysis:

I Sentences ∼ finite structures ∼ strings of Booleans

I Formulae ∼ probabilistic teams ∼ strings of reals
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Expressivity over formulae

FO(⊆) ( FO(⊆, dep(· · · )) ≡ FO(⊥c)

Table: Team semantics

FO(≈) ( FO(≈, dep(· · · )) (∗ FO(⊥⊥c)

Table: Probabilistic team semantics. * New results



Probabilistic inclusion/dependence vs. independence
Both ≈ and dep(· · · ) expressible in FO(⊥⊥c) (JELIA 2019)

Example

Define φ(x) = ∃c∃y∀zθ where θ is defined as

dep(c) ∧ x ⊥⊥ y ∧ x ≈ y ∧ ((x = c ∧ y = c)↔ z = c). (3)

Suppose {0, 1} |=X φ. Then

1. c ∈ {0, 1} is a constant;

2. z is uniformly distributed, so z = c holds for weights 1/2;

3. x = c ∧ y = c holds for weight 1/2;

4. x and y are independent and identically distributed, so x = c holds for weight 1/
√

2.

NB. Irrational weights not definable in FO(≈, dep(· · · )).

Theorem
Over formulae, FO(≈, dep(· · · )) ( FO(⊥⊥c)



Axioms for quantitative dependence

I Marginal independence 3 [Geiger et al., 1991]

I Conditional independence 7 [Studený, 1992]

I Marginal identity ?

Theorem
The following axiomatization is sound and complete:

1. reflexivity: x1 . . . xn ≈ x1 . . . xn;

2. symmetry: if x1 . . . xn ≈ y1 . . . yn, then y1 . . . yn ≈ x1 . . . xn;

3. projection and permutation: if x1 . . . xn ≈ y1 . . . yn, then xi1 . . . xik ≈ yi1 . . . yik ,
where i1, . . . , ik is a sequence of distinct integers from {1, . . . , n}.

4. transitivity: if x1 . . . xn ≈ y1 . . . yn and y1 . . . yn ≈ z1 . . . zn, then
x1 . . . xn ≈ z1 . . . zn.
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Conclusion

I We studied quantitative variants of inclusion and inclusion/dependence logics
I Qualitative and quantitative variants in many ways analogous:

1. Inclusion logic captures P (over ordered models)
2. Inclusion/dependence logic captures NP
3. Marginal identity and independence has axioms, conditional independence has not

I Where the analogy breaks down:
1. Relationship between inclusion/dependence logic, independence logic, and NP

I Qualitative: Both logics capture NP properties of teams
I Quantitative: additive vs. multiplicative properties of prob.teams. For sentences,

former captures NP, latter ∃[0, 1]≤
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