A Logical Characterization of Constant-Depth Arithmetic Circuits over the Reals

Timon Barlag and Heribert Vollmer

Introduction

2 Models and Logic

- \mathbb{R} -machines
- Arithmetic Circuits over $\mathbb R$
- $\bullet~\mathbb{R}\xspace$ -structures and First-order Logic

3 Results

4 Outlook

Introduction

- Real computation
 - R-machines
- Parallel computation
 - Arithmetic circuits (over ℝ)
 - AC⁰_(ℝ)
- Logics & Descriptive complexity
 - AC⁰ = FO [Im89]

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

\mathbb{R} -machines

- unbounded tape of R-registers
- associated graph with node types:
 - input
 - output
 - computation
 - branch
 - shift

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)
- size: number of gates
- *depth*: longest path from input to output

- DAG with node types:
 - input (fan-in 0)
 - constant (fan-in 0)
 - arithmetic (fan-in ≥ 0)
 - sign (fan-in 1)
 - output (fan-in 1)
- size: number of gates
- *depth*: longest path from input to output
- non-uniform!

Circuit families

Circuit families

- Sequences $C = (C_1, C_2, ...)$ of circuits where C_i has *i* input gates
- ▶ If C_i computes f^i for all $i \in \mathbb{N}$, then C computes $f_C(w) = f^{|w|}(w)$.

Circuit families

Circuit families deciding sets

A circuit family C decides a set $S \subseteq \bigcup_{n \in \mathbb{N}} \mathbb{R}^n$ iff C computes the

characteristic function of S.

Circuit classes

- ► NCⁱ_ℝ: sets decided by bounded fan-in circuits families of size O(n^{O(1)}) and depth in O(log(n)ⁱ)
- ► ACⁱ_ℝ: sets decided by unbounded fan-in circuit families of size O(n^{O(1)}) and depth in O(log(n)ⁱ)

Uniformity

Uniform circuit families

- ► There is an ℝ-machine M producing the circuit family.
 - i.e. *M* computes the function $n \mapsto C_n$
- *M* works in polynomial time \rightarrow *P*-uniform
 - U_P-C is the subclass of C decided by P-uniform families
- *M* works in logarithmic time \rightarrow *L*-uniform
 - U_{LT}-*C* is the subclass of *C* decided by *L*-uniform families

First-order Logic over $\mathbb R$

$$\varphi \triangleq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

First-order Logic over $\mathbb R$

$$\varphi \triangleq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

metafinite \mathbb{R} -structures

▶
$$\mathbb{R}$$
-structure $\mathcal{D} = (\mathcal{A}, \mathcal{F})$ of signature $\sigma = (L_s, L_f)$

- \mathcal{A} : finite structure of L_s with universe \mathcal{A}
 - $\bullet\,$ the skeleton of $\mathcal D$
- \mathcal{F} : finite set of functions $X : A^k \to \mathbb{R}$ interpreting symbols in L_f
 - the arithmetic part of ${\cal D}$

First-order Logic over \mathbb{R}

$$\sigma = (\{val\}, \{succ\})$$
$$\varphi \triangleq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

metafinite \mathbb{R} -structures

▶
$$\mathbb{R}$$
-structure $\mathcal{D} = (\mathcal{A}, \mathcal{F})$ of signature $\sigma = (L_s, L_f)$

- \mathcal{A} : finite structure of L_s with universe \mathcal{A}
 - $\bullet\,$ the skeleton of $\mathcal D$
- \mathcal{F} : finite set of functions $X : A^k \to \mathbb{R}$ interpreting symbols in L_f
 - the arithmetic part of ${\cal D}$

First-order Logic over \mathbb{R}

$$\sigma = (\{val\}, \{succ\})$$
$$\varphi \triangleq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

formulas and terms over signature $\sigma = (L_s, L_f)$ for variables x_1, x_2, \ldots

- index terms: variables, functions $f \in L_s$
- **umber terms**: real numbers, functions $g \in L_f$, $t_1 + t_2$, $t_1 \times t_2$, $sign(t_1)$
- formulas
 - atomic: $t_1 = t_2$, $t_1 \leq t_2$, predicates $P \in L_s$
 - non-atomic: closure of atomic formulas under Boolean connectives and quantification (\exists,\forall)

First-order Logic over \mathbb{R} - Example

$$\sigma = (\{val\}, \{succ\})$$
$$\varphi \triangleq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

1

First-order Logic over \mathbb{R} - Example

$$\sigma = (\{val\}, \{succ\})$$
$$\varphi \triangleq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

Structure \mathcal{D} :

$$A = \{v \mid v \in C\}$$

$$val(v) =$$
 the value of v on inputs e and $\frac{1}{2}$,
 $succ(v) =$ the successor gate of v

1

First-order Logic over \mathbb{R} - Example

$$\sigma = (\{val\}, \{succ\})$$
$$\varphi \triangleq \exists x_1 \exists x_2 \ val(x_1) = val(x_2) + \pi \land x_1 = succ(x_2)$$

Structure \mathcal{D} :

$$A = \{v \mid v \in C\}$$

$$val(v) =$$
 the value of v on inputs e and $\frac{1}{2}$
 $succ(v) =$ the successor gate of v

Extensions to $FO_{\mathbb{R}}$

Additional functions / relations

▶ $FO_{\mathbb{R}}[R]$ for a set R of functions and relations

Additional constructions

▶ the sum, product and maximization rules for creating number terms
■ to use ∑_{i∈A} t(i), ∏_{i∈A} t(i) and max_{i∈A}(t(i)) in formulas

$$\varphi = \exists v_1 \ \sup_{v_2} (g(v_2)) > g(v_1) \times 2$$
$$A = \{\diamondsuit, \clubsuit\}, \ g = \{\diamondsuit \mapsto \pi, \clubsuit \mapsto 42\}$$

Extensions to $FO_{\mathbb{R}}$

Additional functions / relations

► FO_R[R] for a set R of functions and relations

Additional constructions

▶ the sum, product and maximization rules for creating number terms
■ to use ∑_{i∈A} t(i), ∏_{i∈A} t(i) and max_{i∈A}(t(i)) in formulas

$$\varphi = \exists v_1 \quad \overbrace{sum(g(v_2))}^{42+\pi} > g(v_1) \times 2$$
$$A = \{\diamondsuit, \clubsuit\}, \ g = \{\diamondsuit \mapsto \pi, \clubsuit \mapsto 42\}$$

Results

Logical Characterizations

Cucher and Meer, 1999: NCⁱ_{IR} = FP_{IR} EOCLOSⁱNJ]. (Fixel point logic) The expressive power of First-order logic is not too log." FD_{IR} S NCⁱ_{IR}. Exact characterizetion?

Results

Logical Characterizations

Non-uniform $AC^0_{\mathbb{R}}$

$$\operatorname{AC}^0_{\mathbb{R}} = \mathsf{FO}_{\mathbb{R}}[\mathsf{Arb}]$$

Polynomial-time uniform $AC^0_{\mathbb{R}}$

$$\operatorname{U}_{\operatorname{P}}\operatorname{-AC}^{\mathsf{0}}_{\operatorname{\mathbb{R}}}=\operatorname{\mathsf{FO}}_{\operatorname{\mathbb{R}}}[\operatorname{\mathsf{FTIME}}_{\operatorname{\mathbb{R}}}(\mathit{n}^{\mathcal{O}(1)})]$$

Logarithmic-time uniform $AC^{0}_{\mathbb{R}}$

$$\operatorname{U_{LT}-AC}^{\mathsf{0}}_{\mathbb{R}} = \mathsf{FO}_{\mathbb{R}}[\mathsf{FTIME}_{\mathbb{R}}(\mathsf{log}(n))] + \mathsf{SUM}_{\mathbb{R}} + \mathsf{PROD}_{\mathbb{R}}$$

Timon Barlag and Heribert Vollmer

Results

Logical Characterizations

Non-uniform $AC^0_{\mathbb{R}}$

$$\operatorname{AC}^0_{\mathbb{R}} = \mathsf{FO}_{\mathbb{R}}[\mathsf{Arb}]$$

Polynomial-time uniform $AC^0_{\mathbb{R}}$

$$\operatorname{U}_{\operatorname{P}}\operatorname{-AC}^{\mathsf{0}}_{\operatorname{\mathbb{R}}}=\operatorname{\mathsf{FO}}_{\operatorname{\mathbb{R}}}[\operatorname{\mathsf{FTIME}}_{\operatorname{\mathbb{R}}}(n^{\mathcal{O}(1)})]$$

Logarithmic-time uniform $AC^{0}_{\mathbb{R}}$

$$\operatorname{U_{LT}-AC}^{0}_{\mathbb{R}} = \mathsf{FO}_{\mathbb{R}}[\mathsf{FTIME}_{\mathbb{R}}(\mathsf{log}(\mathit{n}))] + \mathsf{SUM}_{\mathbb{R}} + \mathsf{PROD}_{\mathbb{R}}$$

One Generalization

For $f(n) \ge \log(n)$:

 $U_{f}-AC^{0}_{\mathbb{R}} = \mathsf{FO}_{\mathbb{R}}[\mathsf{FTIME}_{\mathbb{R}}(f(n))] + \mathsf{SUM}_{\mathbb{R}} + \mathsf{PROD}_{\mathbb{R}}$

Timon Barlag and Heribert Vollmer

A Logical Characterization of AC⁰

Future/Current Research

- Find logical characterizations for more unbounded/semi-unbounded fan-in classes
 - \blacksquare e.g. $\mathrm{AC}^1, \ \mathrm{SAC}^1$ and the respective hierarchies
- contextualize these classes
 - \blacksquare separate $\operatorname{AC}^0_{\mathbb{R}}$ and $\operatorname{NC}^1_{\mathbb{R}}$
- ▶ find meaningful real analogue of TC
 - investigate then in particular the question, whether $\mathrm{TC}^0_{\mathbb{R}} = \mathrm{NC}^1_{\mathbb{R}}$

Future/Current Research

- Find logical characterizations for more unbounded/semi-unbounded fan-in classes
 - e.g. AC¹, SAC¹ and the respective hierarchies
- contextualize these classes
 - \blacksquare separate $\operatorname{AC}^0_{\mathbb{R}}$ and $\operatorname{NC}^1_{\mathbb{R}}$
- find meaningful real analogue of TC
 - investigate then in particular the question, whether $\mathrm{TC}^0_{\mathbb{R}} = \mathrm{NC}^1_{\mathbb{R}}$

Thank you !

- [Im89] Neil Immerman. Expressibility and Parallel Complexity. SIAM J. Comput. 18(3), 625-638 (1989)
- [CM99] Felipe Cucker and Klaus Meer. Logics which capture complexity classes over the reals. J. Symb. Log., 64(1):363-390, 1999.
- [BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer-Verlag, New York, 1998.