
Logical Approach to Graph Neural Networks

Flavio Ferrarotti

Software Competence Center Hagenberg, Asustria

June 8, 2022

In this Talk

Which functions on graphs can be expressed by Graph Neural
Networks?

Plan:

1. Not so short intro to the core model Graph Neural Network
computation.

2. Digression 1: Colour Refinement Algorithm.

3. Digression 2: Finite Variable Counting Logics.

4. Expressive power of Graph Neural Networks w.r.t
distinguishing graphs or their nodes.

5. Digression 3: Expressiveness, database queries and logics.

6. Expressiveness of Graph Neural Networks.

In this Talk

Which functions on graphs can be expressed by Graph Neural
Networks?

Plan:

1. Not so short intro to the core model Graph Neural Network
computation.

2. Digression 1: Colour Refinement Algorithm.

3. Digression 2: Finite Variable Counting Logics.

4. Expressive power of Graph Neural Networks w.r.t
distinguishing graphs or their nodes.

5. Digression 3: Expressiveness, database queries and logics.

6. Expressiveness of Graph Neural Networks.

In this Talk

Which functions on graphs can be expressed by Graph Neural
Networks?

Plan:

1. Not so short intro to the core model Graph Neural Network
computation.

2. Digression 1: Colour Refinement Algorithm.

3. Digression 2: Finite Variable Counting Logics.

4. Expressive power of Graph Neural Networks w.r.t
distinguishing graphs or their nodes.

5. Digression 3: Expressiveness, database queries and logics.

6. Expressiveness of Graph Neural Networks.

In this Talk

Which functions on graphs can be expressed by Graph Neural
Networks?

Plan:

1. Not so short intro to the core model Graph Neural Network
computation.

2. Digression 1: Colour Refinement Algorithm.

3. Digression 2: Finite Variable Counting Logics.

4. Expressive power of Graph Neural Networks w.r.t
distinguishing graphs or their nodes.

5. Digression 3: Expressiveness, database queries and logics.

6. Expressiveness of Graph Neural Networks.

In this Talk

Which functions on graphs can be expressed by Graph Neural
Networks?

Plan:

1. Not so short intro to the core model Graph Neural Network
computation.

2. Digression 1: Colour Refinement Algorithm.

3. Digression 2: Finite Variable Counting Logics.

4. Expressive power of Graph Neural Networks w.r.t
distinguishing graphs or their nodes.

5. Digression 3: Expressiveness, database queries and logics.

6. Expressiveness of Graph Neural Networks.

In this Talk

Which functions on graphs can be expressed by Graph Neural
Networks?

Plan:

1. Not so short intro to the core model Graph Neural Network
computation.

2. Digression 1: Colour Refinement Algorithm.

3. Digression 2: Finite Variable Counting Logics.

4. Expressive power of Graph Neural Networks w.r.t
distinguishing graphs or their nodes.

5. Digression 3: Expressiveness, database queries and logics.

6. Expressiveness of Graph Neural Networks.

In this Talk

Which functions on graphs can be expressed by Graph Neural
Networks?

Plan:

1. Not so short intro to the core model Graph Neural Network
computation.

2. Digression 1: Colour Refinement Algorithm.

3. Digression 2: Finite Variable Counting Logics.

4. Expressive power of Graph Neural Networks w.r.t
distinguishing graphs or their nodes.

5. Digression 3: Expressiveness, database queries and logics.

6. Expressiveness of Graph Neural Networks.

Graph Neural Networks (GNNs)

I Deep learning architectures for graph structured data.

I Wide range of applications, e.g., computer vision, natural
language processing, social network analysis, knowledge
graphs, chemistry, and recommendation systems.

I We consider the core GNN architecture, known as Message
Passing GNN or aggregate-combine GNN.

I There are many other variants, but they are mostly based in
this core architecture.

Graph Neural Networks (GNNs)

I Deep learning architectures for graph structured data.

I Wide range of applications, e.g., computer vision, natural
language processing, social network analysis, knowledge
graphs, chemistry, and recommendation systems.

I We consider the core GNN architecture, known as Message
Passing GNN or aggregate-combine GNN.

I There are many other variants, but they are mostly based in
this core architecture.

Graph Neural Networks (GNNs)

I Deep learning architectures for graph structured data.

I Wide range of applications, e.g., computer vision, natural
language processing, social network analysis, knowledge
graphs, chemistry, and recommendation systems.

I We consider the core GNN architecture, known as Message
Passing GNN or aggregate-combine GNN.

I There are many other variants, but they are mostly based in
this core architecture.

Graph Neural Networks (GNNs)

I Deep learning architectures for graph structured data.

I Wide range of applications, e.g., computer vision, natural
language processing, social network analysis, knowledge
graphs, chemistry, and recommendation systems.

I We consider the core GNN architecture, known as Message
Passing GNN or aggregate-combine GNN.

I There are many other variants, but they are mostly based in
this core architecture.

GNN

1

2

3

4

5

GNN

1

2

3

4

5

x
(0)
2 =




1.0
1.0
1.0
1.0




x
(0)
5

x
(0)
1

x
(0)
4

x
(0)
3

GNN

1

2

3

4

5 x
(0)
5

x
(0)
1

x
(0)
3

x
(0)
2

m
(1)
2 =

(
1.0
1.0

)

x
(0)
4

GNN

1

2

3

4

5 x
(0)
5

x
(0)
1

x
(0)
3

x
(0)
2

m
(1)
2 =

(
1.0
1.0

)

x
(0)
4

m
(1)
4

GNN

1

2

3

4

5 x
(0)
5

x
(0)
1

x
(0)
3

x
(0)
2

m
(1)
2 =

(
1.0
1.0

)

x
(0)
4

m
(1)
4

m
(1)
4

m
(1)
4

m
(1)
2

m
(1)
2

m
(1)
1

m
(1)
1

m
(1)
3

m
(1)
3

m
(1)
5

m
(1)
5

GNN

1

2

3

4

5

x
(1)
2 =




0.7
0.5
−0.3
0.0




x
(1)
1

x
(1)
3

x
(1)
5

x
(1)
4

GNN

1

2

3

4

5

m
(1)
4

x
(1)
2

x
(1)
1

x
(1)
4

x
(1)
5

x
(1)
3

m
(2)
2

m
(2)
1

m
(2)
1

m
(2)
2

m
(2)
3

m
(2)
4

m
(2)
4

m
(2)
2 =

(
0.7
0.5

)

m
(2)
5

m
(2)
5

m
(2)
3

GNN

1

2

3

4

5

x
(2)
2 =




0.7
0.5
−0.3
0.0




x
(2)
1

x
(2)
4

x
(2)
3

x
(2)
5

Computation of GNN

A GNN N with d layers maps a vertex-labelled graph G with finite
node set V to a sequence of functions

ζ(t) : V → Rp for t = 0, . . . , d

I Initialize: ζ(0)(v) encodes node label of v .

I Aggregate: α(t)(v) := aggt({{ζ(t−1)(w) | w ∈ NG (v)}})
I Symmetric function, e.g., sum, mean, max.

I Either applied directly to “states” ζ(t−1)(w) or to some
(learned) linear function of these states.

I Combine: ζ(t)(v) := combt(ζ
(t−1)(v), α(t)(v))

I Computed by a FNN or by some more sophisticated neural
network architecture.

Computation of GNN

A GNN N with d layers maps a vertex-labelled graph G with finite
node set V to a sequence of functions

ζ(t) : V → Rp for t = 0, . . . , d

I Initialize: ζ(0)(v) encodes node label of v .

I Aggregate: α(t)(v) := aggt({{ζ(t−1)(w) | w ∈ NG (v)}})
I Symmetric function, e.g., sum, mean, max.

I Either applied directly to “states” ζ(t−1)(w) or to some
(learned) linear function of these states.

I Combine: ζ(t)(v) := combt(ζ
(t−1)(v), α(t)(v))

I Computed by a FNN or by some more sophisticated neural
network architecture.

Computation of GNN

A GNN N with d layers maps a vertex-labelled graph G with finite
node set V to a sequence of functions

ζ(t) : V → Rp for t = 0, . . . , d

I Initialize: ζ(0)(v) encodes node label of v .

I Aggregate: α(t)(v) := aggt({{ζ(t−1)(w) | w ∈ NG (v)}})
I Symmetric function, e.g., sum, mean, max.

I Either applied directly to “states” ζ(t−1)(w) or to some
(learned) linear function of these states.

I Combine: ζ(t)(v) := combt(ζ
(t−1)(v), α(t)(v))

I Computed by a FNN or by some more sophisticated neural
network architecture.

Computation of GNN

A GNN N with d layers maps a vertex-labelled graph G with finite
node set V to a sequence of functions

ζ(t) : V → Rp for t = 0, . . . , d

I Initialize: ζ(0)(v) encodes node label of v .

I Aggregate: α(t)(v) := aggt({{ζ(t−1)(w) | w ∈ NG (v)}})
I Symmetric function, e.g., sum, mean, max.

I Either applied directly to “states” ζ(t−1)(w) or to some
(learned) linear function of these states.

I Combine: ζ(t)(v) := combt(ζ
(t−1)(v), α(t)(v))

I Computed by a FNN or by some more sophisticated neural
network architecture.

Computation of GNN

A GNN N with d layers maps a vertex-labelled graph G with finite
node set V to a sequence of functions

ζ(t) : V → Rp for t = 0, . . . , d

I Initialize: ζ(0)(v) encodes node label of v .

I Aggregate: α(t)(v) := aggt({{ζ(t−1)(w) | w ∈ NG (v)}})
I Symmetric function, e.g., sum, mean, max.

I Either applied directly to “states” ζ(t−1)(w) or to some
(learned) linear function of these states.

I Combine: ζ(t)(v) := combt(ζ
(t−1)(v), α(t)(v))

I Computed by a FNN or by some more sophisticated neural
network architecture.

Functions Computed by GNNs

ζ(t)(v) := combt(ζ
(t−1)(v), aggt({{ζ(t−1)(w) | w ∈ NG (v)}}))

To compute a node level function F that maps each graph G to a
mapping F (G) : V → Rq, we apply a readout function ro s.t.

F (G)(v) = ro
(
ζ(d)(v)

)
(ro is normally computed by a FNN)

To compute a graph level function f that maps graphs to Rq, we
apply an aggregate readout function aggro s.t.

f (G) = aggro
(
{{ζ(d)(v) | v ∈ V }}

)

(aggro is normally summation followed a FNN)

Functions Computed by GNNs

ζ(t)(v) := combt(ζ
(t−1)(v), aggt({{ζ(t−1)(w) | w ∈ NG (v)}}))

To compute a node level function F that maps each graph G to a
mapping F (G) : V → Rq, we apply a readout function ro s.t.

F (G)(v) = ro
(
ζ(d)(v)

)
(ro is normally computed by a FNN)

To compute a graph level function f that maps graphs to Rq, we
apply an aggregate readout function aggro s.t.

f (G) = aggro
(
{{ζ(d)(v) | v ∈ V }}

)

(aggro is normally summation followed a FNN)

Functions Computed by GNNs

ζ(t)(v) := combt(ζ
(t−1)(v), aggt({{ζ(t−1)(w) | w ∈ NG (v)}}))

To compute a node level function F that maps each graph G to a
mapping F (G) : V → Rq, we apply a readout function ro s.t.

F (G)(v) = ro
(
ζ(d)(v)

)
(ro is normally computed by a FNN)

To compute a graph level function f that maps graphs to Rq, we
apply an aggregate readout function aggro s.t.

f (G) = aggro
(
{{ζ(d)(v) | v ∈ V }}

)

(aggro is normally summation followed a FNN)

Properties of Functions Computed by GNNs

Invariance of Graph Level Functions If f is a graph level function
computed by a GNN and graphs G and H are isomorphic, then

f (G) = f (H)

Equivariance of Node Level Functions If f is a node level function
computed by a GNN and h is an isomorphism from a graph G to a
graph H, then for all node v of G we get

F (G)(v) = F (H)(h(v))

Properties of Functions Computed by GNNs

Invariance of Graph Level Functions If f is a graph level function
computed by a GNN and graphs G and H are isomorphic, then

f (G) = f (H)

Equivariance of Node Level Functions If f is a node level function
computed by a GNN and h is an isomorphism from a graph G to a
graph H, then for all node v of G we get

F (G)(v) = F (H)(h(v))

Recurrent GNNs

So far... we defined GNNs with fixed number d of layers, each
layer t with its own functions aggt and combt .

Recurrent GNN determine the number d of iterations at runtime
and use instead single agg and comb functions.

The number of iterations might depend for instance on the size of
the input graph or the evolution of the sequence (ζ(t))t≥0.

No convergence is required, we can arbitrary decide when to stop.

Recurrent GNNs

So far... we defined GNNs with fixed number d of layers, each
layer t with its own functions aggt and combt .

Recurrent GNN determine the number d of iterations at runtime
and use instead single agg and comb functions.

The number of iterations might depend for instance on the size of
the input graph or the evolution of the sequence (ζ(t))t≥0.

No convergence is required, we can arbitrary decide when to stop.

Recurrent GNNs

So far... we defined GNNs with fixed number d of layers, each
layer t with its own functions aggt and combt .

Recurrent GNN determine the number d of iterations at runtime
and use instead single agg and comb functions.

The number of iterations might depend for instance on the size of
the input graph or the evolution of the sequence (ζ(t))t≥0.

No convergence is required, we can arbitrary decide when to stop.

Recurrent GNNs

So far... we defined GNNs with fixed number d of layers, each
layer t with its own functions aggt and combt .

Recurrent GNN determine the number d of iterations at runtime
and use instead single agg and comb functions.

The number of iterations might depend for instance on the size of
the input graph or the evolution of the sequence (ζ(t))t≥0.

No convergence is required, we can arbitrary decide when to stop.

Colour Refinement (∼ 1-dim. Weisfeiler-Leman) Alg.

1. Initialisation: All nodes get the same colour.

2. Refinement: Two nodes v ,w get different colours if there is
some colour c such that v and w have different numbers of
neighbours of colour c .

3. Termination: Step 2 (Refinement) is repeated until colouring
stays stable.

—————–

I See illustration of colour refinement algorithm by Holger Dell
(2020):
https://holgerdell.github.io/color-refinement/

#seed=g61hy

I If some colour appears different number of times in the
histograms of two graphs G and H, then the graphs are
non-isomorphic.

I Provides an efficient but incomplete isomorphism check.
I O((n + m) log n) for n nodes and m edges.

https://holgerdell.github.io/color-refinement/#seed=g61hy
https://holgerdell.github.io/color-refinement/#seed=g61hy

Colour Refinement (∼ 1-dim. Weisfeiler-Leman) Alg.

1. Initialisation: All nodes get the same colour.

2. Refinement: Two nodes v ,w get different colours if there is
some colour c such that v and w have different numbers of
neighbours of colour c .

3. Termination: Step 2 (Refinement) is repeated until colouring
stays stable.

—————–

I See illustration of colour refinement algorithm by Holger Dell
(2020):
https://holgerdell.github.io/color-refinement/

#seed=g61hy

I If some colour appears different number of times in the
histograms of two graphs G and H, then the graphs are
non-isomorphic.

I Provides an efficient but incomplete isomorphism check.
I O((n + m) log n) for n nodes and m edges.

https://holgerdell.github.io/color-refinement/#seed=g61hy
https://holgerdell.github.io/color-refinement/#seed=g61hy

Colour Refinement (∼ 1-dim. Weisfeiler-Leman) Alg.

1. Initialisation: All nodes get the same colour.

2. Refinement: Two nodes v ,w get different colours if there is
some colour c such that v and w have different numbers of
neighbours of colour c .

3. Termination: Step 2 (Refinement) is repeated until colouring
stays stable.

—————–

I See illustration of colour refinement algorithm by Holger Dell
(2020):
https://holgerdell.github.io/color-refinement/

#seed=g61hy

I If some colour appears different number of times in the
histograms of two graphs G and H, then the graphs are
non-isomorphic.

I Provides an efficient but incomplete isomorphism check.
I O((n + m) log n) for n nodes and m edges.

https://holgerdell.github.io/color-refinement/#seed=g61hy
https://holgerdell.github.io/color-refinement/#seed=g61hy

Colour Refinement (∼ 1-dim. Weisfeiler-Leman) Alg.

1. Initialisation: All nodes get the same colour.

2. Refinement: Two nodes v ,w get different colours if there is
some colour c such that v and w have different numbers of
neighbours of colour c .

3. Termination: Step 2 (Refinement) is repeated until colouring
stays stable.

—————–

I See illustration of colour refinement algorithm by Holger Dell
(2020):
https://holgerdell.github.io/color-refinement/

#seed=g61hy

I If some colour appears different number of times in the
histograms of two graphs G and H, then the graphs are
non-isomorphic.

I Provides an efficient but incomplete isomorphism check.
I O((n + m) log n) for n nodes and m edges.

https://holgerdell.github.io/color-refinement/#seed=g61hy
https://holgerdell.github.io/color-refinement/#seed=g61hy

Colour Refinement (∼ 1-dim. Weisfeiler-Leman) Alg.

1. Initialisation: All nodes get the same colour.

2. Refinement: Two nodes v ,w get different colours if there is
some colour c such that v and w have different numbers of
neighbours of colour c .

3. Termination: Step 2 (Refinement) is repeated until colouring
stays stable.

—————–

I See illustration of colour refinement algorithm by Holger Dell
(2020):
https://holgerdell.github.io/color-refinement/

#seed=g61hy

I If some colour appears different number of times in the
histograms of two graphs G and H, then the graphs are
non-isomorphic.

I Provides an efficient but incomplete isomorphism check.
I O((n + m) log n) for n nodes and m edges.

https://holgerdell.github.io/color-refinement/#seed=g61hy
https://holgerdell.github.io/color-refinement/#seed=g61hy

Colour Refinement (∼ 1-dim. Weisfeiler-Leman) Alg.

1. Initialisation: All nodes get the same colour.

2. Refinement: Two nodes v ,w get different colours if there is
some colour c such that v and w have different numbers of
neighbours of colour c .

3. Termination: Step 2 (Refinement) is repeated until colouring
stays stable.

—————–

I See illustration of colour refinement algorithm by Holger Dell
(2020):
https://holgerdell.github.io/color-refinement/

#seed=g61hy

I If some colour appears different number of times in the
histograms of two graphs G and H, then the graphs are
non-isomorphic.

I Provides an efficient but incomplete isomorphism check.
I O((n + m) log n) for n nodes and m edges.

https://holgerdell.github.io/color-refinement/#seed=g61hy
https://holgerdell.github.io/color-refinement/#seed=g61hy

Finite Variable Counting Logic

Syntactic extension C of first-order logic FO by counting
quantifiers ∃≥p.

Same expressiveness than FO,

∃≥pxϕ(x) ≡ ∃x1 . . . ∃xp
(∧

1≤i≤j≤p

xi 6= xj ∧
∧

i=1,...,p

ϕ(xi)
)

Translation from C to FO incurs an increase in the number of
variables as well as the quantifier rank, e.g.,

∀x∃≥dyE (x , y) (uses 2 variables and quantifier rank 2)

An equivalent FO formula needs at least d + 1 variables and at
least quantifier rank d + 1.

Finite Variable Counting Logic

Syntactic extension C of first-order logic FO by counting
quantifiers ∃≥p.

Same expressiveness than FO,

∃≥pxϕ(x) ≡ ∃x1 . . . ∃xp
(∧

1≤i≤j≤p

xi 6= xj ∧
∧

i=1,...,p

ϕ(xi)
)

Translation from C to FO incurs an increase in the number of
variables as well as the quantifier rank, e.g.,

∀x∃≥dyE (x , y) (uses 2 variables and quantifier rank 2)

An equivalent FO formula needs at least d + 1 variables and at
least quantifier rank d + 1.

Finite Variable Counting Logic

Syntactic extension C of first-order logic FO by counting
quantifiers ∃≥p.

Same expressiveness than FO,

∃≥pxϕ(x) ≡ ∃x1 . . . ∃xp
(∧

1≤i≤j≤p

xi 6= xj ∧
∧

i=1,...,p

ϕ(xi)
)

Translation from C to FO incurs an increase in the number of
variables as well as the quantifier rank, e.g.,

∀x∃≥dyE (x , y) (uses 2 variables and quantifier rank 2)

An equivalent FO formula needs at least d + 1 variables and at
least quantifier rank d + 1.

Some Fragments Finite Variable Counting Logic

By C k we denote the fragment of C consisting of all formulas with
at most k variables.

The guarded fragment GC.
Quantifiers are restricted to range over the neighbours of the
current nodes, i.e., to formulae of the form:

∃≥py(E (x , y) ∧ ψ)

where x and y are distinct variables and y appears as a free
variable in ψ.

We are mainly interested in the 2-variable fragment GC 2, also
known as graded modal logic.

Some Fragments Finite Variable Counting Logic

By C k we denote the fragment of C consisting of all formulas with
at most k variables.

The guarded fragment GC.
Quantifiers are restricted to range over the neighbours of the
current nodes, i.e., to formulae of the form:

∃≥py(E (x , y) ∧ ψ)

where x and y are distinct variables and y appears as a free
variable in ψ.

We are mainly interested in the 2-variable fragment GC 2, also
known as graded modal logic.

Some Fragments Finite Variable Counting Logic

By C k we denote the fragment of C consisting of all formulas with
at most k variables.

The guarded fragment GC.
Quantifiers are restricted to range over the neighbours of the
current nodes, i.e., to formulae of the form:

∃≥py(E (x , y) ∧ ψ)

where x and y are distinct variables and y appears as a free
variable in ψ.

We are mainly interested in the 2-variable fragment GC 2, also
known as graded modal logic.

Distinguishing Power of GNN

Theorem ([Immerman and Lander, 1990])

For all graph G ,H, the following are equivalent:

I Colour refinement does not distinguish G and H.

I G and H satisfy the same sentences of the logic C 2.

Theorem ([Morris et al., 2019, Xu et al., 2019])

For all graph G ,H, the following are equivalent:

I Colour refinement distinguishes G and H.

I G and H are distinguishable by a GNN, i.e., there is a graph
level function f computed by a GNN N such that
f (G) 6= f (H).

Expressiveness of a Logic

Which queries in a class of structures C are expressible in a logic L?

A k-ary query Q on C is a function that maps each A ∈ C to a
relation Q(A) ⊆ Ak satisfying:

I (a1, . . . , ak) ∈ Q(A) iff (f (a1), . . . , f (ak)) ∈ Q(B) for every
isomorphism f from A to B and every (a1, . . . , ak) ∈ Ak .

Queries of arity k = 0 are known as Boolean queries.

Since there are only two 0-ary relations on a structure (true and
false), a Boolean query Q is often identified with the class
{A ∈ C | Q(A) = true}.

Expressiveness of a Logic

Which queries in a class of structures C are expressible in a logic L?

A k-ary query Q on C is a function that maps each A ∈ C to a
relation Q(A) ⊆ Ak satisfying:

I (a1, . . . , ak) ∈ Q(A) iff (f (a1), . . . , f (ak)) ∈ Q(B) for every
isomorphism f from A to B and every (a1, . . . , ak) ∈ Ak .

Queries of arity k = 0 are known as Boolean queries.

Since there are only two 0-ary relations on a structure (true and
false), a Boolean query Q is often identified with the class
{A ∈ C | Q(A) = true}.

Expressiveness of a Logic

Which queries in a class of structures C are expressible in a logic L?

A k-ary query Q on C is a function that maps each A ∈ C to a
relation Q(A) ⊆ Ak satisfying:

I (a1, . . . , ak) ∈ Q(A) iff (f (a1), . . . , f (ak)) ∈ Q(B) for every
isomorphism f from A to B and every (a1, . . . , ak) ∈ Ak .

Queries of arity k = 0 are known as Boolean queries.

Since there are only two 0-ary relations on a structure (true and
false), a Boolean query Q is often identified with the class
{A ∈ C | Q(A) = true}.

Expressiveness of a Logic

Which queries in a class of structures C are expressible in a logic L?

A k-ary query Q on C is a function that maps each A ∈ C to a
relation Q(A) ⊆ Ak satisfying:

I (a1, . . . , ak) ∈ Q(A) iff (f (a1), . . . , f (ak)) ∈ Q(B) for every
isomorphism f from A to B and every (a1, . . . , ak) ∈ Ak .

Queries of arity k = 0 are known as Boolean queries.

Since there are only two 0-ary relations on a structure (true and
false), a Boolean query Q is often identified with the class
{A ∈ C | Q(A) = true}.

Expressing Queries on Graphs

We say that a formula ϕ of a logic L expresses a k-ary query Q if
for all graph G (in the considered class) and k-tuples ā of nodes,

G |= ϕ(ā) iff ā ∈ Q(G)

Analogously, if a GNN N computes a node level function F , then
it expresses a unary query.

More precisely, N expresses the unary query Q if there is an
ε < 1/2 such that for all graphs G and all nodes a,

F (G)(v) ≥ 1− ε if a ∈ Q(G) and

F (G)(v) ≤ ε if a 6∈ Q(G).

Similarly, if a GNN computes a graph level function, then it
expresses a Boolean query

Expressing Queries on Graphs

We say that a formula ϕ of a logic L expresses a k-ary query Q if
for all graph G (in the considered class) and k-tuples ā of nodes,

G |= ϕ(ā) iff ā ∈ Q(G)

Analogously, if a GNN N computes a node level function F , then
it expresses a unary query.

More precisely, N expresses the unary query Q if there is an
ε < 1/2 such that for all graphs G and all nodes a,

F (G)(v) ≥ 1− ε if a ∈ Q(G) and

F (G)(v) ≤ ε if a 6∈ Q(G).

Similarly, if a GNN computes a graph level function, then it
expresses a Boolean query

Expressing Queries on Graphs

We say that a formula ϕ of a logic L expresses a k-ary query Q if
for all graph G (in the considered class) and k-tuples ā of nodes,

G |= ϕ(ā) iff ā ∈ Q(G)

Analogously, if a GNN N computes a node level function F , then
it expresses a unary query.

More precisely, N expresses the unary query Q if there is an
ε < 1/2 such that for all graphs G and all nodes a,

F (G)(v) ≥ 1− ε if a ∈ Q(G) and

F (G)(v) ≤ ε if a 6∈ Q(G).

Similarly, if a GNN computes a graph level function, then it
expresses a Boolean query

Expressing Queries on Graphs

We say that a formula ϕ of a logic L expresses a k-ary query Q if
for all graph G (in the considered class) and k-tuples ā of nodes,

G |= ϕ(ā) iff ā ∈ Q(G)

Analogously, if a GNN N computes a node level function F , then
it expresses a unary query.

More precisely, N expresses the unary query Q if there is an
ε < 1/2 such that for all graphs G and all nodes a,

F (G)(v) ≥ 1− ε if a ∈ Q(G) and

F (G)(v) ≤ ε if a 6∈ Q(G).

Similarly, if a GNN computes a graph level function, then it
expresses a Boolean query

Expressiveness of GNNs

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible in GC 2, then there is a GNN that
expresses Q using a linearised sigmoid lsig as activation function.

I It is not obvious how to adapt the result to other activation
functions (beyond ReLU).

I The converse inclusion does not (fully) hold.
I E.g. a GNN can decide decide whether a node a has twice as

many neighbours with a given label L1 as it has with label L2.

But there is a partial converse...

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible by a GNN and also expressible in
first-order logic, then Q is expressible in GC 2.

Expressiveness of GNNs

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible in GC 2, then there is a GNN that
expresses Q using a linearised sigmoid lsig as activation function.

I It is not obvious how to adapt the result to other activation
functions (beyond ReLU).

I The converse inclusion does not (fully) hold.
I E.g. a GNN can decide decide whether a node a has twice as

many neighbours with a given label L1 as it has with label L2.

But there is a partial converse...

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible by a GNN and also expressible in
first-order logic, then Q is expressible in GC 2.

Expressiveness of GNNs

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible in GC 2, then there is a GNN that
expresses Q using a linearised sigmoid lsig as activation function.

I It is not obvious how to adapt the result to other activation
functions (beyond ReLU).

I The converse inclusion does not (fully) hold.
I E.g. a GNN can decide decide whether a node a has twice as

many neighbours with a given label L1 as it has with label L2.

But there is a partial converse...

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible by a GNN and also expressible in
first-order logic, then Q is expressible in GC 2.

Expressiveness of GNNs

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible in GC 2, then there is a GNN that
expresses Q using a linearised sigmoid lsig as activation function.

I It is not obvious how to adapt the result to other activation
functions (beyond ReLU).

I The converse inclusion does not (fully) hold.
I E.g. a GNN can decide decide whether a node a has twice as

many neighbours with a given label L1 as it has with label L2.

But there is a partial converse...

Theorem ([Barceló et al., 2020])

If Q is a unary query expressible by a GNN and also expressible in
first-order logic, then Q is expressible in GC 2.

Final Consideration

I The described results provide clear evidence in favour of:

I Pursuing a precise understanding of the expressive power of
NNs through well established methods from logic.

I Possible line of work (among others):

I To explore the design space of GNNs by considering the
impact in their expressive power of different features such as
recurrence, activation functions (beyond ReLu) and alternative
ways of assuring isomorphism invariance.

Final Consideration

I The described results provide clear evidence in favour of:

I Pursuing a precise understanding of the expressive power of
NNs through well established methods from logic.

I Possible line of work (among others):

I To explore the design space of GNNs by considering the
impact in their expressive power of different features such as
recurrence, activation functions (beyond ReLu) and alternative
ways of assuring isomorphism invariance.

Thank you!!!

References I

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter,
J. L., and Silva, J. P. (2020).
The logical expressiveness of graph neural networks.
In ICLR. OpenReview.net.

Immerman, N. and Lander, E. (1990).
Describing graphs: A first-order approach to graph
canonization.
In Selman, A., editor, Complexity Theory Retrospective, pages
59–81. Springer-Verlag.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. (2019).
Weisfeiler and Leman go neural: Higher-order graph neural
networks.
In AAAI, pages 4602–4609. AAAI Press.

References II

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks?
In ICLR. OpenReview.net.

